Electroencephalographic Monitoring in the Pediatric Intensive Care Unit

  • Nicholas S. Abend
  • Kevin E. Chapman
  • William B. Gallentine
  • Joshua Goldstein
  • Ann E. Hyslop
  • Tobias Loddenkemper
  • Kendall B. Nash
  • James J. RivielloJr.
  • Cecil D. Hahn
  • On behalf of the Pediatric Critical Care EEG Group (PCCEG) and the Critical Care EEG Monitoring Research Consortium (CCEMRC)
Pediatric Neurology (D Nordli, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Neurology


Continuous electroencephalographic (CEEG) monitoring is used with increasing frequency in critically ill children to provide insight into brain function and to identify electrographic seizures. CEEG monitoring use often impacts clinical management, most often by identifying electrographic seizures and status epilepticus. Most electrographic seizures have no clinical correlate, and thus would not be identified without CEEG monitoring. There are increasing data showing that electrographic seizures and electrographic status epilepticus are associated with worse outcome. Seizure identification efficiency may be improved by further development of quantitative electroencephalography trends. This review describes the clinical impact of CEEG data, the epidemiology of electrographic seizures and status epilepticus, the impact of electrographic seizures on outcome, the utility of quantitative electroencephalographic trends for seizure identification, and practical considerations regarding CEEG monitoring.


Electroencephalogram Electroencephalographic monitoring Seizure Status epilepticus Intensive care unit Critical care 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Sanchez SM, Carpenter J, Chapman KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. In press. A survey of large hospitals in the USA and Canada regarding EEG monitoring in the pediatric ICU. EEG monitoring use is increasing, and the most common indication is identification of nonconvulsive seizures. Google Scholar
  2. 2.
    Abend NS, Dlugos DJ, Hahn CD, et al. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12:382–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Abend NS, Topjian AA, Gutierrez-Colina AM, et al. Impact of continuous EEG monitoring on clinical management in critically ill children. Neurocrit Care. 2011;15:70–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Firosh Khan S, Ashalatha R, Thomas SV, Sarma PS. Emergent EEG is helpful in neurology critical care practice. Clin Neurophysiol. 2005;116:2454–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Praline J, Grujic J, Corcia P, et al. Emergent EEG in clinical practice. Clin Neurophysiol. 2007;118:2149–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Bautista RE, Godwin S, Caro D. Incorporating abbreviated EEGs in the initial workup of patients who present to the emergency room with mental status changes of unknown etiology. J Clin Neurophysiol. 2007;24:16–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Varelas PN, Spanaki MV, Hacein-Bey L, et al. Emergent EEG: indications and diagnostic yield. Neurology. 2003;61:702–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Benbadis SR, Chen S, Melo M. What's shaking in the ICU? The differential diagnosis of seizures in the intensive care setting. Epilepsia. 2010;51:2338–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous electroencephalographic monitoring affects the prescribing of antiepileptic medications. Arch Neurol. 2009;66:723–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Guerit JM, Amantini A, Amodio P, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin. 2009;39:71–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Abend NS, Licht DJ. Predicting outcome in children with hypoxic ischemic encephalopathy. Pediatr Crit Care Med. 2008;9:32–9.PubMedGoogle Scholar
  13. 13.
    Nishisaki A, Sullivan 3rd J, Steger B, et al. Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years. Pediatr Crit Care Med. 2007;8:10–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Kessler S, Topjian AA, Guterrez-Colina AM, et al. Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2011;14:37–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Kravljanac R, Jovic N, Djuric M, et al. Outcome of status epilepticus in children treated in the intensive care unit: a study of 302 cases. Epilepsia. 2011;52:358–63.PubMedGoogle Scholar
  16. 16.
    Pampiglione G, Harden A. Resuscitation after cardiocirculatory arrest. Prognostic evaluation of early electroencephalographic findings. Lancet. 1968;1:1261–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Tasker RC, Boyd S, Harden A, Matthew DJ. Monitoring in non-traumatic coma. Part II: electroencephalography. Arch Dis Child. 1988;63:895–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheliout-Heraut F, Sale-Franque F, Hubert P, Bataille J. Cerebral anoxia in near-drowning of children. The prognostic value of EEG. Neurophysiol Clin. 1991;21:121–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Ramachandrannair R, Sharma R, Weiss SK, Cortez MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33:345–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Mandel R, Martinot A, Delepoulle F, et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr. 2002;141:45–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Pampiglione G, Chaloner J, Harden A, O'Brien J. Transitory ischemia/anoxia in young children and the prediction of quality of survival. Ann N Y Acad Sci. 1978;315:281–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Evans BM, Bartlett JR. Prediction of outcome in severe head injury based on recognition of sleep related activity in the polygraphic electroencephalogram. J Neurol Neurosurg Psychiatry. 1995;59:17–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78:796–802.PubMedCrossRefGoogle Scholar
  24. 24.
    Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47:83–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Drislane FW. Presentation, evaluation, and treatment of nonconvulsive status epilepticus. Epilepsy Behav. 2000;1:301–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Ronner HE, Ponten SC, Stam CJ, Uitdehaag BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18:257–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Cross JH. When is epileptic encephalopathy nonconvulsive status epilepticus? Epilepsia. 2007;48 Suppl 8:42–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Abend NS, Gutierrez-Colina AM, Topjian AA, et al. Non-convulsive seizures are common in critically ill children. Neurology. 2011;76:1071–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Hosain SA, Solomon GE, Kobylarz EJ. Electroencephalographic patterns in unresponsive pediatric patients. Pediatr Neurol. 2005;32:162–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63:1750–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Abend NS, Dlugos DJ. Nonconvulsive status epilepticus in a pediatric intensive care unit. Pediatr Neurol. 2007;37:165–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Alehan FK, Morton LD, Pellock JM. Utility of electroencephalography in the pediatric emergency department. J Child Neurol. 2001;16:484–7.PubMedGoogle Scholar
  34. 34.
    Tay SK, Hirsch LJ, Leary L, et al. Nonconvulsive status epilepticus in children: clinical and EEG characteristics. Epilepsia. 2006;47:1504–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51:1198–204.PubMedCrossRefGoogle Scholar
  36. 36.
    Abend NS, Topjian A, Ichord R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72:1931–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Williams K, Jarrar R, Buchhalter J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52:1130–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Greiner HM, Holland K, Leach JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129:e748–55.PubMedCrossRefGoogle Scholar
  39. 39.
    • Kirkham FJ, Wade AM, McElduff F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38:853–62. This is a study of 204 critically ill comatose children and neonates who underwent EEG monitoring. Worse outcome was associated with clinically evident seizures, electrographic seizures, higher number and longer duration of electrographic seizures, and a worse EEG background score. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic seizures were associated with worse outcome.PubMedCrossRefGoogle Scholar
  40. 40.
    McCoy B, Sharma R, Ochi A, et al. Predictors of nonconvulsive seizures among critically ill children. Epilepsia. 2011;52:1973–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Schreiber JM, Zelleke T, Gaillard WD, et al. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care. 2012;17:31–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Dan B, Boyd S. Nonconvulsive (dialeptic) status epilepticus in children. Curr Pediatr Rev. 2005;1:7–16.CrossRefGoogle Scholar
  43. 43.
    Claassen J, Mayer SA, Kowalski RG, et al. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Abend NS, Beslow LA, Smith SE, et al. Seizures as a presenting symptom of acute arterial ischemic stroke in childhood. J Pediatr. 2011;159:479–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Beslow-Kaye LA, Abend NS, Gindville MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. Archiv Neurol. In press.Google Scholar
  46. 46.
    Hahn JS, Vaucher Y, Bejar R, Coen RW. Electroencephalographic and neuroimaging findings in neonates undergoing extracorporeal membrane oxygenation. Neuropediatrics. 1993;24:19–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Horan M, Azzopardi D, Edwards AD, et al. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83:69–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Helmers SL, Wypij D, Constantinou JE, et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr Clin Neurophysiol. 1997;102:27–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Clancy RR, McGaurn SA, Wernovsky G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2003;111:592–601.PubMedCrossRefGoogle Scholar
  50. 50.
    Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130:1278–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Clancy RR, Sharif U, Ichord R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46:84–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Chock VY, Reddy VM, Bernstein D, Madan A. Neurologic events in neonates treated surgically for congenital heart disease. J Perinatol. 2006;26:237–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Schmitt B, Finckh B, Christen S, et al. Electroencephalographic changes after pediatric cardiac surgery with cardiopulmonary bypass: is slow wave activity unfavorable? Pediatr Res. 2005;58:771–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Gunn JK, Beca J, Penny DJ, et al. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-type operations. Ann Thorac Surg. 2012;93:170–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Hyllienmark L, Amark P. Continuous EEG monitoring in a paediatric intensive care unit. Eur J Paediatr Neurol. 2007;11:70–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Gutierrez-Colina AM, Topjian AA, Dlugos DJ, Abend NS. EEG Monitoring in critically ill children: indications and strategies. Pediatr Neurol. 2012;46:158–61.PubMedCrossRefGoogle Scholar
  57. 57.
    • Topjian AA, Gutierrez-Colina AM, Sanchez SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;1:215–23. This is a prospective study of 200 critically ill children with acute encephalopathy who underwent EEG monitoring. Electrographic seizures occurred in 21 % of the children and electrographic status epilepticus occurred in 22 % of the children. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic status epilepticus (but not electrographic seizures) was associated with an increased risk of mortality and neurologic morbidity. Google Scholar
  58. 58.
    Lambrechtsen FA, Buchhalter JR. Aborted and refractory status epilepticus in children: a comparative analysis. Epilepsia. 2008;49:615–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131:181–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation. 1998;97:773–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–32.PubMedCrossRefGoogle Scholar
  63. 63.
    • Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124:1361–9. This is a long-term follow-up of prospectively enrolled children with dextro transposition of the great arteries who underwent an arterial switch operation and postoperative EEG monitoring with successive neurodevelopmental assessments. The presence of postoperative electrographic seizures was the medical variable most consistently associated with worse outcome when evaluated in follow-up of the children as adolescents.PubMedCrossRefGoogle Scholar
  64. 64.
    Carrera E, Claassen J, Oddo M, et al. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65:1612–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Oddo M, Carrera E, Claassen J, et al. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Gwer S, Idro R, Fegan G, et al. Continuous EEG monitoring in Kenyan children with non-traumatic coma. Arch Dis Child. 2012;97:343–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Trevathan E, Ellen R. Grass Lecture: rapid EEG analysis for intensive care decisions in status epilepticus. Am J Electroneurodiagnostic Technol. 2006;46:4–17.PubMedGoogle Scholar
  71. 71.
    Riviello JJ. Digital trend analysis in the pediatric and neonatal intensive care units (ICU). J Clin Neurophysiol. In press.Google Scholar
  72. 72.
    Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.PubMedGoogle Scholar
  73. 73.
    Boylan G, Burgoyne L, Moore C, et al. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99:1150–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Ponnusamy V, Nath P, Bissett L, et al. Current availability of cerebral function monitoring and hypothermia therapy in UK neonatal units. Arch Dis Child Fetal Neonatal Ed. 2010;95:F383–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Filippi L, Catarzi S, Gozzini E, et al. Hypothermia for neonatal hypoxic-ischemic encephalopathy: may an early amplitude-integrated EEG improve the selection of candidates for cooling? J Matern Fetal Neonatal Med. 2012;25:2171–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Lawrence R, Mathur A, Nguyen The Tich S, et al. A pilot study of continuous limited-channel aEEG in term infants with encephalopathy. J Pediatr. 2009;154:835–41e1.PubMedCrossRefGoogle Scholar
  78. 78.
    Frenkel N, Friger M, Meledin I, et al. Neonatal seizure recognition - Comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122:1091–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Evans E, Koh S, Lerner J, et al. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95:F169–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Shah DK, Mackay MT, Lavery S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121:1146–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol. 2012;46:32–5.PubMedCrossRefGoogle Scholar
  82. 82.
    van Rooij LG, Toet MC, van Huffelen AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125:e358–66.PubMedCrossRefGoogle Scholar
  83. 83.
    Shellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society's guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28:611–7.Google Scholar
  84. 84.
    • Stewart CP, Otsubo H, Ochi A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75:1501–8. This is a study of the diagnostic accuracy of two quantitative EEG display tools for seizure identification in critically ill children by neurophysiologists. The median sensitivity for seizure identification across all recordings was 83 % with CDSA and 82 % with a EEG, but for individual recordings the sensitivities ranged from 0 to 100 %. False-positive rates were low.PubMedCrossRefGoogle Scholar
  85. 85.
    Akman CI, Micic V, Thompson A, Riviello Jr JJ. Seizure detection using digital trend analysis: factors affecting utility. Epilepsy Res. 2011;93:66–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Glaria AP, Murray A. Comparison of EEG monitoring techniques: an evaluation during cardiac surgery. Electroencephalogr Clin Neurophysiol. 1985;61:323–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Abend NS, Gutierrez-Colina AM, Zhao H, et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J Clin Neurophysiol. 2011;28:15–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Kull LL, Emerson RG. Continuous EEG monitoring in the intensive care unit: technical and staffing considerations. J Clin Neurophysiol. 2005;22:107–18.PubMedCrossRefGoogle Scholar
  89. 89.
    American Society of Electroneurodiagnostic Technologists. National competency skill standards for ICU/cEEG monitoring. Am J Electroneurodiagnostic Technol. 2008;48:258–64.Google Scholar
  90. 90.
    Kolls BJ, Husain AM. Assessment of hairline EEG as a screening tool for nonconvulsive status epilepticus. Epilepsia. 2007;48:959–65.PubMedCrossRefGoogle Scholar
  91. 91.
    Benbadis SR. Use and abuse of stat EEG. Am J Electroneurodiagnostic Technol. 2009;49:87–93.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicholas S. Abend
    • 1
  • Kevin E. Chapman
    • 2
  • William B. Gallentine
    • 3
  • Joshua Goldstein
    • 4
  • Ann E. Hyslop
    • 5
  • Tobias Loddenkemper
    • 6
  • Kendall B. Nash
    • 7
  • James J. RivielloJr.
    • 8
  • Cecil D. Hahn
    • 9
  • On behalf of the Pediatric Critical Care EEG Group (PCCEG) and the Critical Care EEG Monitoring Research Consortium (CCEMRC)
  1. 1.Division of Neurology, The Children’s Hospital of PhiladelphiaThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pediatrics and NeurologyUniversity of Colorado at Denver, Children’s Hospital ColoradoDenverUSA
  3. 3.Division of Pediatric NeurologyDuke University Medical CenterDurhamUSA
  4. 4.Child Neurology, Feinberg School of MedicineNorthwestern University, Anne and Robert H. Lurie Children’s HospitalChicagoUSA
  5. 5.Pediatric NeurologyMiami Children’s HospitalMiamiUSA
  6. 6.Division of Epilepsy and Clincial Neurophysiology, Department of NeurologyBoston Children’s Hospital and Harvard Medical SchoolBostonUSA
  7. 7.Departments of Neurology and PediatricsUniversity of California at San FranciscoSan FranciscoUSA
  8. 8.Division of Pediatric Neurology and Comprehensive Epilepsy CenterNew York University School of MedicineNew YorkUSA
  9. 9.Division of Neurology, Department of PaediatricsThe Hospital for Sick Children and University of TorontoTorontoCanada

Personalised recommendations