Advertisement

Current Neurology and Neuroscience Reports

, Volume 12, Issue 6, pp 715–723 | Cite as

Recent Advances in the Imaging of Frontotemporal Dementia

  • Jennifer L. Whitwell
  • Keith A. JosephsEmail author
Behavior (HS Kirshner, Section Editor)

Abstract

Neuroimaging has played an important role in the characterization of the frontotemporal dementia (FTD) syndromes, demonstrating neurodegenerative signatures that can aid in the differentiation of FTD from other neurodegenerative disorders. Recent advances have been driven largely by the refinement of the clinical syndromes that underlie FTD, and by the discovery of new genetic and pathological features associated with FTD. Many new imaging techniques and modalities are also now available that allow the assessment of other aspects of brain structure and function, such as diffusion tensor imaging and resting-state functional MRI. Studies have used these recent techniques, as well as traditional volumetric MRI, to provide further insight into disease progression across the many clinical, genetic, and pathological variants of FTD. Importantly, neuroimaging signatures have been identified that will improve the clinician’s ability to predict underlying genetic and pathological features, and hence ultimately improve patient diagnosis.

Keywords

Magnetic resonance imaging Diffusion tensor imaging Resting-state functional magnetic resonance imaging Behavioral variant frontotemporal dementia Semantic dementia Agrammatic Apraxia of speech C9orf72 hexanucleotide repeat Progranulin Tau Transactivation response element DNA binding protein of 43 kDa Fused in sarcoma Atrophy White matter tracts Functional connectivity 

Notes

Disclosure

J.L. Whitwell: consultant (Bristol-Myers Squibb); K.A. Josephs: none.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen HJ, Gorno-Tempini ML, Goldman WP, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58:198–208.PubMedCrossRefGoogle Scholar
  3. 3.
    Frings L, Mader I, Landwehrmeyer BG, Weiller C, Hull M, Huppertz HJ. Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry. Hum Brain Mapp. 2012;33:1526–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Krueger CE, Dean DL, Rosen HJ, et al. Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer's disease. Alzheimer Dis Assoc Disord. 2010;24:43–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Brambati SM, Renda NC, Rankin KP, et al. A tensor based morphometry study of longitudinal gray matter contraction in FTD. NeuroImage. 2007;35:998–1003.PubMedCrossRefGoogle Scholar
  6. 6.
    Agosta F, Scola E, Canu E, et al. White matter damage in frontotemporal lobar degeneration Spectrum. Cereb Cortex. 2011.Google Scholar
  7. 7.
    Whitwell JL, Avula R, Senjem ML, et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology. 2010;74:1279–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Y, Schuff N, Du AT, et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain. 2009;132:2579–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Whitwell JL, Josephs KA, Avula R, et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77:866–74.PubMedCrossRefGoogle Scholar
  10. 10.
    •• Zhou J, Greicius MD, Gennatas ED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–67. The first study to demonstrate that bvFTD is associated with disrupted functional connectivity using resting-state fMRI. The authors demonstrate reduced connectivity in the salience network and increased connectivity in the posterior default mode network.PubMedCrossRefGoogle Scholar
  11. 11.
    Whitwell JL, Przybelski SA, Weigand SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132:2932–46.PubMedCrossRefGoogle Scholar
  12. 12.
    • Josephs Jr KA, Whitwell JL, Weigand SD, et al. Predicting functional decline in behavioural variant frontotemporal dementia. Brain. 2011;134:432–48. The authors demonstrate that imaging variables can help predict future clinical decline in bvFTD. These results will be particularly important to aid clinicians in providing prognostic estimates.PubMedCrossRefGoogle Scholar
  13. 13.
    Josephs KA, Whitwell JL, Knopman DS, et al. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology. 2009;73:1443–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Whitwell JL, Xu J, Mandrekar J, et al. Frontal asymmetry in behavioral variant frontotemporal dementia: clinicoimaging and pathogenetic correlates. Neurobiol Aging. 2012.Google Scholar
  15. 15.
    Boccardi M, Laakso MP, Bresciani L, Geroldi C, Beltramello A, Frisoni GB. Clinical characteristics of frontotemporal patients with symmetric brain atrophy. Eur Arch Psychiatry Clin Neurosci. 2002;252:235–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies RR, Kipps CM, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging. Arch Neurol. 2006;63:1627–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord. 2007;23:334–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Kipps CM, Hodges JR, Fryer TD, Nestor PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain. 2009;132:2566–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Josephs KA, Whitwell JL, Jack CR, Parisi JE, Dickson DW. Frontotemporal lobar degeneration without lobar atrophy. Arch Neurol. 2006;63:1632–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosen HJ, Allison SC, Schauer GF, Gorno-Tempini ML, Weiner MW, Miller BL. Neuroanatomical correlates of behavioural disorders in dementia. Brain. 2005;128:2612–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Peters F, Perani D, Herholz K, et al. Orbitofrontal dysfunction related to both apathy and disinhibition in frontotemporal dementia. Dement Geriatr Cogn Disord. 2006;21:373–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hornberger M, Geng J, Hodges JR. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain. 2011;134:2502–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Krueger CE, Laluz V, Rosen HJ, Neuhaus JM, Miller BL, Kramer JH. Double dissociation in the anatomy of socioemotional disinhibition and executive functioning in dementia. Neuropsychology. 2011;25:249–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Massimo L, Powers C, Moore P, et al. Neuroanatomy of apathy and disinhibition in frontotemporal lobar degeneration. Dement Geriatr Cogn Disord. 2009;27:96–104.PubMedCrossRefGoogle Scholar
  25. 25.
    Schroeter ML, Vogt B, Frisch S, et al. Dissociating behavioral disorders in early dementia-An FDG-PET study. Psychiatry Res. 2011;194:235–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J. Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology. 2008;71:736–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Eslinger PJ, Moore P, Antani S, Anderson C, Grossman M. Apathy in frontotemporal dementia: behavioral and neuroimaging correlates. Behav Neurol. 2012;25:127–36.PubMedGoogle Scholar
  28. 28.
    Whitwell JL, Sampson EL, Loy CT, et al. VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration. NeuroImage. 2007;35:207–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Woolley JD, Gorno-Tempini ML, Seeley WW, et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology. 2007;69:1424–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Piguet O, Petersen A, Yin Ka Lam B, et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol. 2011;69:312–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Perry DC, Whitwell JL, Boeve BF, et al. Voxel-based morphometry in patients with obsessive-compulsive behaviors in behavioral variant frontotemporal dementia. Eur J Neurol. 2012;19:911–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Strenziok M, Pulaski S, Krueger F, Zamboni G, Clawson D, Grafman J. Regional brain atrophy and impaired decision making on the balloon analog risk task in behavioral variant frontotemporal dementia. Cogn Behav Neurol. 2011;24:59–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Eslinger PJ, Moore P, Anderson C, Grossman M. Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. J Neuropsychiatry Clin Neurosci. 2011;23:74–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Pennington C, Hodges JR, Hornberger M. Neural correlates of episodic memory in behavioral variant frontotemporal dementia. J Alzheimers Dis. 2011;24:261–8.PubMedGoogle Scholar
  35. 35.
    Josephs KA, Whitwell JL, Jack Jr CR. Anatomic correlates of stereotypies in frontotemporal lobar degeneration. Neurobiol Aging. 2008;29:1859–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55:335–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Rabinovici GD, Jagust WJ, Furst AJ, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008;64:388–401.PubMedCrossRefGoogle Scholar
  39. 39.
    Chan D, Fox NC, Scahill RI, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol. 2001;49:433–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstl H, Kurz A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging. 2004;25:1051–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Galton CJ, Patterson K, Graham K, et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology. 2001;57:216–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Mummery CJ, Patterson K, Price CJ, Ashburner J, Frackowiak RS, Hodges JR. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol. 2000;47:36–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Rohrer JD, Clarkson MJ, Kittus R, et al. Rates of hemispheric and lobar atrophy in the language variants of frontotemporal lobar degeneration. J Alzheimers Dis. 2012;30:407–11.PubMedGoogle Scholar
  44. 44.
    Whitwell JL, Anderson VM, Scahill RI, Rossor MN, Fox NC. Longitudinal patterns of regional change on volumetric MRI in frontotemporal lobar degeneration. Dement Geriatr Cogn Disord. 2004;17:307–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Brambati SM, Rankin KP, Narvid J, et al. Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study. Neurobiol Aging. 2009;30:103–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Rohrer JD, McNaught E, Foster J, et al. Tracking progression in frontotemporal lobar degeneration: serial MRI in semantic dementia. Neurology. 2008;71:1445–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Chan D, Anderson V, Pijnenburg Y, et al. The clinical profile of right temporal lobe atrophy. Brain. 2009;132:1287–98.PubMedCrossRefGoogle Scholar
  48. 48.
    Thompson SA, Patterson K, Hodges JR. Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology. 2003;61:1196–203.PubMedCrossRefGoogle Scholar
  49. 49.
    Edwards-Lee T, Miller BL, Benson DF, et al. The temporal variant of frontotemporal dementia. Brain. 1997;120(Pt 6):1027–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Mion M, Patterson K, Acosta-Cabronero J, et al. What the left and right anterior fusiform gyri tell us about semantic memory. Brain. 2010;133:3256–68.PubMedCrossRefGoogle Scholar
  51. 51.
    Binney RJ, Embleton KV, Jefferies E, Parker GJ, Ralph MA. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb Cortex. 2010;20:2728–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Josephs KA, Whitwell JL, Vemuri P, et al. The anatomic correlate of prosopagnosia in semantic dementia. Neurology. 2008;71:1628–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Omar R, Rohrer JD, Hailstone JC, Warren JD. Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2011;82:1341–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Hsieh S, Hornberger M, Piguet O, Hodges JR. Neural basis of music knowledge: evidence from the dementias. Brain. 2011;134:2523–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson JK, Chang CC, Brambati SM, et al. Music recognition in frontotemporal lobar degeneration and Alzheimer disease. Cogn Behav Neurol. 2011;24:74–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Acosta-Cabronero J, Patterson K, Fryer TD, et al. Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. Brain. 2012;134:2025–35.CrossRefGoogle Scholar
  57. 57.
    Agosta F, Henry RG, Migliaccio R, et al. Language networks in semantic dementia. Brain. 2010;133:286–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Schwindt GC, Graham NL, Rochon E, et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp. 2011.Google Scholar
  59. 59.
    • Galantucci S, Tartaglia MC, Wilson SM, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011;134:3011–29. An elegant study that uses sophisticated tractography methods and DTI to assess white matter tract integrity in the three variants of PPA. The authors demonstrate clear and characteristic patterns of white matter tract degeneration in each variant of PPA which could be diagnostically useful.PubMedCrossRefGoogle Scholar
  60. 60.
    Josephs KA, Duffy JR, Fossett TR, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol. 2010;67:596–605.PubMedCrossRefGoogle Scholar
  61. 61.
    Josephs KA, Duffy JR, Strand EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129:1385–98.PubMedCrossRefGoogle Scholar
  62. 62.
    Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain. 2003;126:2406–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Grossman M, McMillan C, Moore P, et al. What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain. 2004;127:628–49.PubMedCrossRefGoogle Scholar
  64. 64.
    Rohrer JD, Warren JD, Modat M, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology. 2009;72:1562–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Garibotto V, Borroni B, Agosti C, et al. Subcortical and deep cortical atrophy in Frontotemporal Lobar Degeneration. Neurobiol Aging. 2011;32:875–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Rohrer JD, Rossor MN, Warren JD. Syndromes of nonfluent primary progressive aphasia: a clinical and neurolinguistic analysis. Neurology. 2010;75:603–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Josephs KA, Duffy JR, Strand EA, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain. 2012;135:1522–36.PubMedCrossRefGoogle Scholar
  68. 68.
    Amici S, Ogar J, Brambati SM, et al. Performance in specific language tasks correlates with regional volume changes in progressive aphasia. Cogn Behav Neurol. 2007;20:203–11.PubMedCrossRefGoogle Scholar
  69. 69.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.PubMedCrossRefGoogle Scholar
  71. 71.
    Boeve BF, Boylan KB, Graff-Radford NR, et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain. 2012;135:765–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Kelley BJ, Haidar W, Boeve BF, et al. Prominent phenotypic variability associated with mutations in progranulin. Neurobiol Aging. 2009;30:739–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Whitwell JL, Jack Jr CR, Boeve BF, et al. Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN. Neurology. 2009;72:813–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Rohrer JD, Ridgway GR, Modat M, et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. NeuroImage. 2010;53:1070–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Spina S, Farlow MR, Unverzagt FW, et al. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain. 2008;131:72–89.PubMedCrossRefGoogle Scholar
  76. 76.
    Whitwell JL, Jack Jr CR, Boeve BF, et al. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology. 2009;73:1058–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Beck J, Rohrer JD, Campbell T, et al. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain. 2008;131:706–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Boxer AL, Mackenzie IR, Boeve BF, et al. Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry. 2011;82:196–203.PubMedCrossRefGoogle Scholar
  79. 79.
    Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135:736–50.PubMedCrossRefGoogle Scholar
  80. 80.
    •• Whitwell JL, Weigand SD, Boeve BF, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain. 2012;135:794–806. The authors identify specific patterns of atrophy that are associated with the C9orf72 repeat expansion and demonstrate that patterns of atrophy have utility in helping to differentiate these subjects from subjects with mutations in tau and progranulin, and sporadic FTD. These findings could help clinicians in predicting the presence of genetic mutations if genetic testing is unavailable.PubMedCrossRefGoogle Scholar
  81. 81.
    Murray ME, DeJesus-Hernandez M, Rutherford NJ, et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol. 2011;122:673–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Whitwell JL, Weigand SD, Gunter JL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77:393–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Borroni B, Alberici A, Premi E, et al. Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. Rejuvenation Res. 2008;11:585–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Kantarci K, Boeve BF, Wszolek ZK, et al. MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology. 2010;75:771–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Miyoshi M, Shinotoh H, Wszolek ZK, et al. In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord. 2010;16:404–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Josephs KA, Hodges JR, Snowden JS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122:137–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Whitwell JL, Josephs KA. Neuroimaging in frontotemporal lobar degeneration–predicting molecular pathology. Nat Rev Neurol. 2012;8:131–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Whitwell JL, Josephs KA, Rossor MN, et al. Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Arch Neurol. 2005;62:1402–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Whitwell JL, Jack Jr CR, Parisi JE, et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci. 2011;45:372–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Rankin KP, Mayo MC, Seeley WW, et al. Behavioral variant frontotemporal dementia with corticobasal degeneration pathology: phenotypic comparison to bvFTD with Pick's disease. J Mol Neurosci. 2011;45:594–608.PubMedCrossRefGoogle Scholar
  91. 91.
    Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging. 2008;29:280–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Whitwell JL, Jack Jr CR, Boeve BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75:1879–87.PubMedCrossRefGoogle Scholar
  93. 93.
    • Rohrer JD, Lashley T, Schott JM, et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain. 2011;134:2565–81. A large study demonstrating patterns of gray and white matter atrophy across different genetic and pathological variants of FTD. The study confirms genetic and pathological associations previously identified and allows comparison across all variants.PubMedCrossRefGoogle Scholar
  94. 94.
    Mackenzie IR, Neumann M, Baborie A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122:111–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Rohrer JD, Geser F, Zhou J, et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology. 2010;75:2204–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Whitwell JL, Jack Jr CR, Parisi JE, et al. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology. 2010;75:2212–20.PubMedCrossRefGoogle Scholar
  97. 97.
    Whitwell JL, Jack Jr CR, Senjem ML, Josephs KA. Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration. Neurology. 2006;66:102–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Josephs KA, Whitwell JL, Parisi JE, et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur J Neurol. 2010;17:969–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Seelaar H, Klijnsma KY, de Koning I, et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J Neurol. 2010;257:747–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Whitwell JL, Jack Jr CR, Senjem ML, et al. MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration. Neurodegener Dis. 2009;6:106–17.PubMedCrossRefGoogle Scholar
  101. 101.
    Pereira JM, Williams GB, Acosta-Cabronero J, et al. Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration. Neurology. 2009;72:1653–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA
  2. 2.Department of NeurologyMayo ClinicRochesterUSA

Personalised recommendations