Current Neurology and Neuroscience Reports

, Volume 12, Issue 3, pp 243–250 | Cite as

Recent Advances in the Genetics of the ALS-FTLD Complex

  • Huw R. MorrisEmail author
  • Adrian J. Waite
  • Nigel M. Williams
  • James W. Neal
  • Derek J. Blake
Genetics (V Bonifati, Section Editor)


There is a clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of autosomal-dominant genes have been described that primarily cause ALS or FTLD such as progranulin (GRN), valosin-containing protein (VCP), and TAR DNA-Binding Protein (TARDBP), and for each of these conditions there are a small number of cases with both ALS and FTLD. Two major genes were described in 2011, which cause FTLD and/or ALS within extended kindreds. Ubiquilin2 (UBQLN2) is responsible for X-linked FTLD/ALS. A hexanucleotide repeat expansion in C9ORF72 causes chromosome 9p linked FTLD/ALS and is the most common cause of familial ALS accounting for about 40 % of familial cases. Both UBQLN2 and C9ORF72 mutations lead to TDP-43 positive neuropathology, and C9ORF72-positive cases have p62/ubiquitin-positive pathology, which is not stained by TDP-43 antibodies. Ubiquilin2 is one of a family of proteins thought to be important in targeting abnormal proteins for degradation via lysosomal and proteasomal routes. The pathogenic mechanism of the C9ORF72 expansion is unknown but may involve partial haploinsufficiency of C9ORF72 and/or the formations of toxic RNA inclusions. The identification of mutations in these genes represents an important step forward in our understanding of the clinical, pathological, and genetic spectrum of ALS/FTLD diseases.


Frontotemporal dementia Frontotemporal lobar degeneration FTLD C9ORF72 Chromosome 9 Motor neuron disease Amyotrophic lateral sclerosis ALS Autosomal dominant X-linked Genetics UBQLN2 



Conflicts of interest: H.R. Morris: has board membership with GlaxoSmithKline, Orion, Boehringer, Abbott, Solvay, and TEVA; has received grant support from Medical Research Council, Ipsen Fund, Welsh Assembly Government, Parkinson’s UK; has received payment for lectures including service on speakers bureaus from UCB Pharma, Orion, Boehringer, GlaxoSmithKline, TEVA; has received travel/accommodations/meeting expenses unrelated to activities listed from UCB, Orion, GlaxoSmithKline, Boehringer, TEVA; A.J. Waite: has received grant support from Motor Neuron Disease Association (MNDA), and has received support for travel to meetings for the study or other purposes from MNDA and Guarantors of brain; N.M. Williams: has received grant support from MNDA; J.W. Neal: none; D.J. Blake: has received grant support from MNDA.


Papers of particular interest, published recently, have been highlighted as:•• Of major importance

  1. 1.
    Mitsuyama Y, Takamiya S. Presenile dementia with motor neuron disease in Japan. A new entity? Arch Neurol. 1979;36(9):592–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Wikström J, Paetau A, Palo J, Sulkava R, Haltia M. Classic amyotrophic lateral sclerosis with dementia. Arch Neurol. 1982;39(11):681–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53(1):23–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M, Martin JE, et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain: J Neurol. 1991;114(Pt 2):775–88.CrossRefGoogle Scholar
  5. 5.
    Okamoto K, Hirai S, Yamazaki T, Sun XY, Nakazato Y. New ubiquitin-positive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett. 1991;129(2):233–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson M, Lennox G, Lowe J. Motor neurone disease-inclusion dementia. Neurodegeneration: J Neurodegener Disord, Neuroprotection, Neuroregeneration. 1996;5(4):339–50.Google Scholar
  7. 7.
    Gunnarsson LG, Dahlbom K, Strandman E. Motor neuron disease and dementia reported among 13 members of a single family. Acta Neurol Scand. 1991;84(5):429–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Rossor MN, Revesz T, Lantos PL, Warrington EK. Semantic dementia with ubiquitin-positive tau-negative inclusion bodies. Brain: J Neurol. 2000;123(Pt 2):267–76.CrossRefGoogle Scholar
  9. 9.
    Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996;61(5):450–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6(11):994–1003.PubMedCrossRefGoogle Scholar
  11. 11.
    Ringholz GM, Appel SH, Bradshaw M, Cooke Na, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65(4):586–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den Broeck M, et al. Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatr. 2002;7(10):1064–74.CrossRefGoogle Scholar
  13. 13.
    Rademakers R, Rovelet-Lecrux A. Recent insights into the molecular genetics of dementia. Trends Neurosci. 2009;32(8):451–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15(20):2988–3001.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen-Plotkin AS, Martinez-Lage M, Sleiman PMa, Hu W, Greene R, Wood EM, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (New York, NY). 2006;314(5796):130–3.CrossRefGoogle Scholar
  17. 17.
    Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VM-Y, Hatanpaa KJ, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 2007;114(1):5–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord: NMD. 2009;19(5):308–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, NY). 2008;319(5870):1668–72.CrossRefGoogle Scholar
  23. 23.
    Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30(11):E974–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol. 2009;65(4):470–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (New York, NY). 2009;323(5918):1208–11.CrossRefGoogle Scholar
  26. 26.
    Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science (New York, NY). 2009;323(5918):1205–8.CrossRefGoogle Scholar
  27. 27.
    Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9(10):995–1007.PubMedCrossRefGoogle Scholar
  28. 28.
    ••Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–5. The first description of UBQLN2 as causing X-linked ALS, illustrating the effect of pathogenic mutations on proteasomal function, and the occurrence of ubiquilin2 pathology in sporadic ALS.PubMedCrossRefGoogle Scholar
  29. 29.
    Millecamps S, Corcia P, Cazeneuve C, Boillée S, Seilhean D, Danel-Brunaud V, et al. Mutations in UBQLN2 are rare in French amyotrophic lateral sclerosis. Neurobiol Aging. 2011.Google Scholar
  30. 30.
    Zhang C, Saunders AJ. An emerging role for ubiquilin 1 in regulating protein quality control system and in disease pathogenesis. Discov Med. 2009;8(40):18–22.PubMedGoogle Scholar
  31. 31.
    Rothenberg C, Monteiro MJ. Ubiquilin at a crossroads in protein degradation pathways. Autophagy. 2010;6(7):979–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet. 2010;19(16):3219–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E, et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology. 2006;66(6):839–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain: J Neurol. 2006;129(Pt 4):868–76.CrossRefGoogle Scholar
  35. 35.
    Pearson JP, Williams NM, Majounie E, Waite A, Stott J, Newsway V, et al. Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p. J Neurol. 2011;258(4):647–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Boxer AL, Mackenzie IR, Boeve BF, Baker M, Seeley WW, Crook R, et al. Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry. 2011;82(2):196–203.PubMedCrossRefGoogle Scholar
  37. 37.
    Shatunov A, Mok K, Newhouse S, Weale ME, Smith B, Vance C, et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol. 2010;9(10):986–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai S-L, Myllykangas L, et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol. 2010;9(10):978–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Mok K, Traynor BJ, Schymick J, Tienari PJ, Laaksovirta H, Peuralinna T, et al. Chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiol Aging. 2012;33(1):209.e3–8.CrossRefGoogle Scholar
  40. 40.
    •• Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. The first description of pathogenic mutations in C9orf72 in families with FTLD/ALS, in back-to-back publications with DeJesus-Hernandez et al. [41••]. Together with Mok et al. (39), illustrates that the hexanucleotide expansion occurs on a common haplotype, and shows that there is an exceptionally high rate of mutations in Finnish ALS patients.PubMedCrossRefGoogle Scholar
  41. 41.
    •• DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):1–12. The first description of pathogenic mutations in C9orf72 in families with FTLD/ALS, in back-to-back publications with Renton et al. [40••]. Describes haploinsufficiency of some isoforms of C9ORF72 and the occurrence of nuclear RNA inclusions.CrossRefGoogle Scholar
  42. 42.
    Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol. 2011;122(6):673–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Snowden JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AMT, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain: J Neurol. 2012;135(Pt 3):693–708.CrossRefGoogle Scholar
  44. 44.
    Majounie E, Abramzon Y, Renton AE, Perry R, Bassett SS, Pletnikova O, et al. Repeat expansion in C9ORF72 in Alzheimer’s disease. N Engl J Med. 2012;366:283–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012;11(1):54–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Simón-Sánchez J, Dopper EGP, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain: J Neurol. 2012;135(Pt 3):723–35.CrossRefGoogle Scholar
  47. 47.
    Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol. 2010;67(3):291–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Huw R. Morris
    • 1
    • 2
    • 4
    Email author
  • Adrian J. Waite
    • 1
  • Nigel M. Williams
    • 1
  • James W. Neal
    • 3
  • Derek J. Blake
    • 1
  1. 1.MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff University School of MedicineCardiffUK
  2. 2.Department of NeurologyRoyal Gwent HospitalGwentUK
  3. 3.Department of PathologyCardiff University School of MedicineCardiffUK
  4. 4.Neurology (C4)University Hospital of WalesCardiffUK

Personalised recommendations