Current Neurology and Neuroscience Reports

, Volume 12, Issue 2, pp 153–164

Syndromes Predisposing to Pediatric Central Nervous System Tumors: Lessons Learned and New Promises

Pediatric Neurology (R Packer, Section Editor)

Abstract

Central nervous system (CNS) neoplasms are a leading cause of morbidity and mortality among children with cancer. In contrast to adults, a genetic basis for brain tumors is relatively common in children. A child harboring a germline mutation in a cancer-related gene will be predisposed to develop CNS tumors. These cancer predisposition syndromes are rare but pose overwhelming clinical and psychosocial challenges to families and the treating team. Recent significant advances in our understanding of the biological processes that govern these genetic conditions combined with international efforts to define and treat clinical aspects of these tumors are transforming the lives of these individuals. In this article, we summarize recent progress made for each of the major CNS tumor syndromes. We discuss the biological and clinical relevance of such advances, and suggest a comprehensive approach to a child affected by a predisposition to brain tumors.

Keywords

Brain tumor Cancer predisposition Child Central nervous system tumors 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Tabori U, Shlien A, Baskin B, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28:1995–2001.PubMedCrossRefGoogle Scholar
  2. 2.
    • Eaton KW, Tooke LS, Wainwright LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Canc. 2011;56:7–15. This paper demonstrates a striking frequency of germline SMARCB1 mutations among patients with rhabdoid tumors, highlighting the need for genetic screening in this group.CrossRefGoogle Scholar
  3. 3.
    Williams VC, Lucas J, Babcock MA, et al. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123:124–33.PubMedCrossRefGoogle Scholar
  4. 4.
    National Institutes of Health Consensus Development Conference Statement: neurofibromatosis. Bethesda, Md., USA, July 13–15, 1987. Neurofibromatosis 1988;1:172–8.Google Scholar
  5. 5.
    Wallace MR, Marchuk DA, Andersen LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990;249:181–6.PubMedCrossRefGoogle Scholar
  6. 6.
    McGillicuddy LT, Fromm JA, Hollstein PE, et al. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell. 2009;16:44–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Banerjee S, Crouse NR, Emnett RJ, et al. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci USA. 2011.Google Scholar
  8. 8.
    Yunoue S, Tokuo H, Fukunaga K, et al. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003;278:26958–69.PubMedCrossRefGoogle Scholar
  9. 9.
    Warrington NM, Gianino SM, Jackson E, et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2010;70:5717–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Dasgupta B, Dugan LL, Gutmann DH. The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J Neurosci. 2003;23:8949–54.PubMedGoogle Scholar
  11. 11.
    Laithier V, Grill J, Le Deley MC, et al. Progression-free survival in children with optic pathway tumors: dependence on age and the quality of the response to chemotherapy–results of the first French prospective study for the French Society of Pediatric Oncology. J Clin Oncol. 2003;21:4572–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Opocher E, Kremer LC, Da Dalt L, et al. Prognostic factors for progression of childhood optic pathway glioma: a systematic review. Eur J Cancer. 2006;42:1807–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Packer RJ, Ater J, Allen J, et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg. 1997;86:747–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Grill J, Laithier V, Rodriguez D, et al. When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur J Pediatr. 2000;159:692–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Gutmann DH, Listernick R, Ferner RE. Screening for symptomatic optic pathway glioma in children with neurofibromatosis type 1. Eye (Lond). 2011;25:818. author reply 818-819.CrossRefGoogle Scholar
  16. 16.
    Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61:189–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Huttner AJ, Kieran MW, Yao X, et al. Clinicopathologic study of glioblastoma in children with neurofibromatosis type 1. Pediatr Blood Canc. 2010;54:890–6.Google Scholar
  18. 18.
    Rosenfeld A, Listernick R, Charrow J, Goldman S. Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Childs Nerv Syst. 2010;26:663–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Widemann BC, Salzer WL, Arceci RJ, et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24:507–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Evans DG, Farndon PA, Burnell LD, et al. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br J Cancer. 1991;64:959–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85:841–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen Jr MM. The hedgehog signaling network. Am J Med Genet A. 2003;123A:5–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31:306–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Kimonis VE, Goldstein AM, Pastakia B, et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet. 1997;69:299–308.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorlin RJ. Nevoid basal cell carcinoma (Gorlin) syndrome. Genet Med. 2004;6:530–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Amlashi SF, Riffaud L, Brassier G, Morandi X. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer. 2003;98:618–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Hottinger AF, Khakoo Y. Neurooncology of familial cancer syndromes. J Child Neurol. 2009;24:1526–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Choudry Q, Patel HC, Gurusinghe NT, Evans DG. Radiation-induced brain tumours in nevoid basal cell carcinoma syndrome: implications for treatment and surveillance. Childs Nerv Syst. 2007;23:133–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352:978–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000;406:1005–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Merchant AA, Matsui W. Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res. 2010;16:3130–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2010;29:1408–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:125–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13:624–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Sancak O, Nellist M, Goedbloed M, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13:731–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Weiner DM, Ewalt DH, Roach ES, Hensle TW. The tuberous sclerosis complex: a comprehensive review. J Am Coll Surg. 1998;187:548–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Torres OA, Roach ES, Delgado MR, et al. Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol. 1998;13:173–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59:490–8.PubMedCrossRefGoogle Scholar
  41. 41.
    • Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–11. This study highlights the potential of mTOR inhibitors to induce tumor regression and obviate the need for surgical resection of SEGAs.PubMedCrossRefGoogle Scholar
  42. 42.
    • Davies DM, de Vries PJ, Johnson SR, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17:4071–81. This study demonstrates the promising effect of mTOR inhibitors on other systemic features of tuberous sclerosis.PubMedCrossRefGoogle Scholar
  43. 43.
    Davies DM, Johnson SR, Tattersfield AE, et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med. 2008;358:200–3.PubMedCrossRefGoogle Scholar
  44. 44.
    D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Alter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet. 2007;44:1–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res. 2009;668:73–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Birch JM, Alston RD, McNally RJ, et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 2001;20:4621–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Tinat J, Bougeard G, Baert-Desurmont S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27:e108–109. author reply e110.PubMedCrossRefGoogle Scholar
  51. 51.
    Tabori U, Baskin B, Shago M, et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28:1345–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Pollack IF, Finkelstein SD, Woods J, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 2002;346:420–7.PubMedCrossRefGoogle Scholar
  53. 53.
    • Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12:559–67. This paper describes a recently developed surveillance protocol that has shown promise for early detection of LFS-related tumors and a potential survival benefit.PubMedCrossRefGoogle Scholar
  54. 54.
    Turcot J, Despres JP. St Pierre F: Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum. 1959;2:465–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Paraf F, Jothy S, Van Meir EG. Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol. 1997;15:2744–58.PubMedGoogle Scholar
  56. 56.
    • Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet. 2008;124:105–22. This paper specifies clinical features that should prompt screening for an MMR deficiency syndrome.PubMedCrossRefGoogle Scholar
  57. 57.
    Kruger S, Kinzel M, Walldorf C, et al. Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. Eur J Hum Genet. 2008;16:62–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Q, Montmain G, Ruano E, et al. Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type. Hum Genet. 2003;112:117–23.PubMedGoogle Scholar
  59. 59.
    Durno CA, Holter S, Sherman PM, Gallinger S. The gastrointestinal phenotype of germline biallelic mismatch repair gene mutations. Am J Gastroenterol. 2010;105:2449–56.PubMedCrossRefGoogle Scholar
  60. 60.
    NCCN Colorectal Cancer Screening Panel: NCCN Clinical Practice Guidelines in Oncology: Colorectal Cancer Screening V2.2011.Google Scholar
  61. 61.
    Dumo C, Hawkins C, Aronson M, et al. Distinctive clinical, genetic and cancer features of children with mismatch repair cancer susceptibility and RAS/MAPK syndromes [abstract 2010-A-294-ISPNO]. Presented at the 14th International Symposium on Pediatric Neuro-oncology (ISPNO). Vienna, Austria; June 20–23, 2010.Google Scholar
  62. 62.
    Gottschling S, Reinhard H, Pagenstecher C, et al. Hypothesis: Possible role of retinoic acid therapy in patients with biallelic mismatch repair gene defects. Eur J Pediatr. 2008;167:225–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.PubMedCrossRefGoogle Scholar
  64. 64.
    Ikeda J, Sawamura Y, van Meir EG. Pineoblastoma presenting in familial adenomatous polyposis (FAP): random association, FAP variant or Turcot syndrome? Br J Neurosurg. 1998;12:576–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot's syndrome. N Engl J Med. 1995;332:839–47.PubMedCrossRefGoogle Scholar
  66. 66.
    Benchabane H, Ahmed Y. The adenomatous polyposis coli tumor suppressor and Wnt signaling in the regulation of apoptosis. Adv Exp Med Biol. 2009;656:75–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Attard TM, Giglio P, Koppula S, et al. Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 2007;109:761–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7:813–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Asthagiri AR, Parry DM, Butman JA, et al. Neurofibromatosis type 2. Lancet. 2009;373:1974–86.PubMedCrossRefGoogle Scholar
  70. 70.
    Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363:515–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Wong HK, Lahdenranta J, Kamoun WS, et al. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res. 2010;70:3483–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Baser ME, Friedman JM, Joe H, et al. Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genet Med. 2011;13:576–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Evans DG, Huson SM, Donnai D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet. 1992;29:841–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Evans DG, Baser ME, O'Reilly B, et al. Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg. 2005;19:5–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Twomey JG, Bove C, Cassidy D. Presymptomatic genetic testing in children for neurofibromatosis 2. J Pediatr Nurs. 2008;23:183–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Plotkin SR, Halpin C, McKenna MJ, et al. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol. 2010;31:1135–43.PubMedCrossRefGoogle Scholar
  77. 77.
    • Mautner VF, Nguyen R, Kutta H, et al. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro Oncol. 2010;12:14–8. This study demonstrates promising results with the use of anti-VEGF therapy for patients with NF-2–associated vestibular schwannomas.PubMedCrossRefGoogle Scholar
  78. 78.
    • Plotkin SR, Stemmer-Rachamimov AO, Barker 2nd FG, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med. 2009;361:358–67. This study demonstrates promising results with the use of anti-VEGF therapy for patients with NF-2–associated vestibular schwannomas.PubMedCrossRefGoogle Scholar
  79. 79.
    Sevenet N, Sheridan E, Amram D, et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med. 2010;16:1429–33.PubMedCrossRefGoogle Scholar
  82. 82.
    • Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27:385–9. This study demonstrates long-term survival in a subset of patients with CNS ATRT, who historically have a dismal outcome.PubMedCrossRefGoogle Scholar
  83. 83.
    • Finkelstein-Shechter T, Gassas A, Mabbott D, et al. Atypical teratoid or rhabdoid tumors: improved outcome with high-dose chemotherapy. J Pediatr Hematol Oncol. 2010;32:e182–186. This study demonstrates long-term survival in a subset of patients with CNS ATRT, who historically have a dismal outcome.PubMedGoogle Scholar
  84. 84.
    Tekautz TM, Fuller CE, Blaney S, et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23:1491–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Hilden JM, Meerbaum S, Burger P, et al. Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry. J Clin Oncol. 2004;22:2877–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Hadfield KD, Newman WG, Bowers NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet. 2008;45:332–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Lonser RR, Glenn GM, Walther M, et al. von Hippel-Lindau disease. Lancet. 2003;361:2059–67.PubMedCrossRefGoogle Scholar
  88. 88.
    Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.PubMedCrossRefGoogle Scholar
  89. 89.
    Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16:1289–300.PubMedCrossRefGoogle Scholar
  90. 90.
    Pilarski R. Cowden syndrome: a critical review of the clinical literature. J Genet Couns. 2009;18:13–27.PubMedCrossRefGoogle Scholar
  91. 91.
    Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11:687–94.PubMedCrossRefGoogle Scholar
  92. 92.
    Miller RW, Rubinstein JH. Tumors in Rubinstein-Taybi syndrome. Am J Med Genet. 1995;56:112–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Frappart PO, McKinnon PJ. Ataxia-telangiectasia and related diseases. Neuromolecular Med. 2006;8:495–511.PubMedCrossRefGoogle Scholar
  94. 94.
    McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep. 2004;5:772–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Mavrou A, Tsangaris GT, Roma E, Kolialexi A. The ATM gene and ataxia telangiectasia. Anticancer Res. 2008;28:401–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Haematology/OncologyThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Genetics and Genome Biology ProgramThe Hospital for Sick ChildrenTorontoCanada
  3. 3.The Arthur and Sonia Labbat Brain Tumor Research CentreThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations