Pharmacogenomics and Multiple Sclerosis: Moving Toward Individualized Medicine



Notwithstanding the availability of disease-modifying treatments including interferon-β, glatiramer acetate, and natalizumab, a considerable proportion of multiple sclerosis (MS) patients experience continued progression of disease, clinical relapses, disease activity on MRI, and adverse effects. Application of gene expression, proteomic or genomic approaches is universally accepted as a suitable strategy toward the identification of biomarkers with predictive value for beneficial/poor clinical response to therapy and treatment risks. This review focuses on recent progress in research on the pharmacogenomics of disease-modifying therapies for MS. Although MS drug response biomarkers are not yet routinely implemented in the clinic, the diversity of reported, promising molecular markers is rapidly increasing. Even though most of these markers await further validation, given time, this research is likely to empower neurologists with an enhanced armamentarium to facilitate rational decisions on therapy and patient management.


Multiple sclerosis Interferon-β Glatiramer acetate Natalizumab Single nucleotide polymorphism Biomarker Genomic Proteomic Drug response Pharmacogenomics Individualized medicine 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Pappas JD, Oksenberg JR. Multiple sclerosis pharmacogenomics. Maximizing efficacy of therapy. Neurology. 2010;74 Suppl 1:S62–269.PubMedCrossRefGoogle Scholar
  2. 2.
    Ma Q, Lu AY: Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;In press.Google Scholar
  3. 3.
    The Interferon β Multiple Sclerosis Study Group: Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43:655–661.Google Scholar
  4. 4.
    Jacobs LD, Cookfair DL, Rudick RA, et al.: Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996;39:285–294.Google Scholar
  5. 5.
    PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group: Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352:1498–504.Google Scholar
  6. 6.
    Ford C, Goodman AD, Johnson K, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler. 2010;16:342–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Kala M, Miravalle A, Vollmer T: Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol. 2011;In press.Google Scholar
  8. 8.
    Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Eng J Med. 2006;354:899–910.CrossRefGoogle Scholar
  9. 9.
    Vandenbroeck K, Urcelay E, Comabella M. IFN-β pharmacogenomics in multiple sclerosis. Pharmacogenomics. 2010;11:1137–48.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Doherty C, Villoslada P, Vandenbroeck K. Pharmacogenomics of Type I interferon therapy: a survey of response-modifying genes. Cytokine Growth Factor Rev. 2007;18:211–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Deisenhammer F, Reindi M, Harvey J, et al. Bioavailability of interferon beta 1b in MS patients with and without neutralizing antibodies. Neurol. 1999;52:1239–43.Google Scholar
  12. 12.
    Pollman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralizing antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010;9:740–50.CrossRefGoogle Scholar
  13. 13.
    Hecker M, Goertsches RH, Fatum C, et al.: Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment. Pharmacogenomics J. 2010;In press.Google Scholar
  14. 14.
    Goertsches RH, Hecker M, Koczan D, et al. Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS. Pharmacogenomics. 2010;11:147–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Serrano-Fernández P, Möller S, Goertsches R, et al. Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity. 2010;43:172–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Alexander JS, Harris MK, Wells SR, et al. Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-beta1b. Mult Scler. 2010;16:801–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Tran T, Paz P, Velichko S, et al. Interferonβ-1b Induces the expression of RGS1 a negative regulator of G-protein signaling. Int J Cell Biol. 2010;2010:529376.PubMedGoogle Scholar
  18. 18.
    Namdar A, Nikbin B, Ghabaee M, et al. Effect of IFN-beta therapy on the frequency and function of CD4(+)CD25(+) regulatory T cells and Foxp3 gene expression in relapsing-remitting multiple sclerosis (RRMS): a preliminary study. J Neuroimmunol. 2010;218:120–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Balashov KE, Aung LL, Vaknin-Dembinsky A, et al. Interferon-β inhibits toll-like receptor 9 processing in multiple sclerosis. Ann Neurol. 2010;68:899–906.PubMedCrossRefGoogle Scholar
  20. 20.
    • Axtell RC, de Jong BA, Boniface K, et al.: T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16:406–412. Demonstration that high IL-17 F concentration in serum of RRMS patients is associated with lack of response to IFN-β.Google Scholar
  21. 21.
    Bosca I, Villar LM, Coret F, et al. Response to interferon in multiple sclerosis is related to lipid-specific oligoclonal IgM bands. Mult Scler. 2010;16:810–5.PubMedCrossRefGoogle Scholar
  22. 22.
    • Comabella M, Lünemann JD, Río J, et al.: A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009;132:3353–3365. Demonstration that lack of response to IFN-β therapy is associated with activation of type I IFN pathway genes.Google Scholar
  23. 23.
    Van Baarsen LGM, Vosslamber S, Tijssen M, et al. Pharmacogenomics of interferon-β therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLOS One. 2008;3:e1927.PubMedCrossRefGoogle Scholar
  24. 24.
    Gandhi KS, McKay FC, Diefenbach E, et al. Novel approaches to detect serum biomarkers for clinical response to interferon-beta treatment in multiple sclerosis. PLoS One. 2010;5:e10484.PubMedCrossRefGoogle Scholar
  25. 25.
    Martinez-Forero I, Pelaez A, Villoslada P. Pharmacogenomics of multiple sclerosis: in search for a personalized therapy. Expert Opin Pharmacother. 2008;9:3053–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Vandenbroeck K, Matute C. Pharmacogenomics of the response to IFN-beta in multiple sclerosis: ramifications from the first genome-wide screen. Pharmacogenomics. 2008;9:639–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Vandenbroeck K, Comabella M. Single-nucleotide polymorphisms in response to interferon-beta therapy in multiple sclerosis. J Interferon Cytokine Res. 2010;30:727–32.PubMedCrossRefGoogle Scholar
  28. 28.
    • Gross R, Healy BC, Cepok S, et al.: Population structure and HLA DRB1*1501 in the response of subjects with multiple sclerosis to first-line treatments. J Neuroimmunol. 2010;In press. The authors demonstrate a decline in the time-based likelihood of relapse suggestive for the existence of subgroups of patients differing in responsiveness to treatment. Building on earlier data [29] the authors provide suggestive evidence for a role of IRF8 in event-free persistence in IFN-β–treated patients, while HLA-DRB1*1501 displayed a similar effect in GA-treated patients.Google Scholar
  29. 29.
    De Jager PL, Jia X, Wang J, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009;41:776–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Fusco C, Andreone V, Coppola G, et al. HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing-remitting multiple sclerosis. Neurology. 2001;57:1976–9.PubMedGoogle Scholar
  31. 31.
    Grossman I, Avidan N, Singer C, et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics. 2007;17:657–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Kristjansdottir G, Sandling JK, Bonetti A, et al. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J Med Genet. 2008;45:362–9.PubMedCrossRefGoogle Scholar
  33. 33.
    • Vandenbroeck K, Alloza I, Swaminathan B, et al.: Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun. 2011;12:40–45. First indication for a role of IRF5 in clinical response to IFN-β therapy.Google Scholar
  34. 34.
    • Vosslamber S, van der Voort LF, van den Elskamp IJ, et al.: Interferon regulatory factor 5 gene variants and pharmacological and clinical outcome of interferon-β therapy in multiple sclerosis. Genes Immun. 2011;In press. Solid link between IRF5 and IFN-β treatment success.Google Scholar
  35. 35.
    Graham RR, Kyogoku C, Sigursson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA. 2007;104:6758–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Burwick RM, Ramsay PP, Haines JL, et al. APOE epsilon variation in multiple sclerosis susceptibility and disease severity: some answers. Neurology. 2006;66:1373–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Guerrero AL, Tejero MA, Gutiérrez F, et al. Influence of APOE gene polymorphisms on interferon-beta treatment response in multiple sclerosis. Neurologia. 2011;26:137–42.PubMedGoogle Scholar
  39. 39.
    Carmona O, Masuet C, Alía P, et al. Apolipoprotein alleles and the response to interferon-β-1b in multiple sclerosis. Eur Neurol. 2011;65:132–7.PubMedGoogle Scholar
  40. 40.
    Patti F, Amato MP, Bastianello S, et al. Effects of immunodulatory treatment with subcutaneous interferon beta-1a on cognitive decline in mildly disabled patients with relapsing-remitting multiple sclerosis. Mult Scler. 2010;16:68–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Ghaffar R, Feinstein A. APOE epsilon4 and cognitive dysfunction in multiple sclerosis: a review. J Neuropsychiatry Clin Neurosci. 2010;22:155–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Ghaffar O, Reis M, Pennell N, O’Connor P, Feinstein A. APOE epsilon4 and the cognitive genetics of multiple sclerosis. Neurology. 2010;74:1611–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Carmona O, Masuet C, Santiago O, et al.: Multiple sclerosis and cognitive decline: is ApoE-4 a surrogate marker? Acta Neurol Scand. 2011;In press.Google Scholar
  44. 44.
    • Alvarez-Lafuente R, Blanco-Kelly F, Garcia-Montojo M, et al.: CD46 in a Spanish cohort of multiple sclerosis patients: genetics, mRNA expression and response to interferon-beta treatment. Mult Scler. 2010;In press. First demonstration of relationship between a CD46 SNP, CD46 mRNA levels, and IFN-β treatment success.Google Scholar
  45. 45.
    Alvarez-Lafuente R, Martinez A, Garcia-Moreno M, et al. MHC2TA rs4774C and HHV-6A active replication in multiple sclerosis patients. Eur J Neurol. 2010;17:129–35.PubMedCrossRefGoogle Scholar
  46. 46.
    • Enevold C, Oturai AB, Sorensen PS, et al.: Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients. Mult Scler. 2010;16:942–949. Demonstration of a gender-specific effect of a SNP in the TLR6 gene on formation of NAbs against IFN-β.Google Scholar
  47. 47.
    Byun E, Caillier SJ, Montalban X, et al. Genome-wide pharmacogenomics analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 2008;65:337–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Comabella M, Craig DW, Morcillo-Súarez C, et al. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol. 2009;66:972–8.PubMedCrossRefGoogle Scholar
  49. 49.
    O’Doherty C, Favorov A, Heggarty S, et al. Genetic polymorphisms, their allele combinations and IFN-beta treatment response in Irish multiple sclerosis patients. Pharmacogenomics. 2009;10:1177–86.PubMedCrossRefGoogle Scholar
  50. 50.
    Comi G. Treatment of multiple sclerosis: role of natalizumab. Neurol Sci. 2009;30 Suppl 2:S155–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Clifford DB, De Luca A, Simpson DM, et al. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol. 2010;9:438–46.PubMedCrossRefGoogle Scholar
  52. 52.
    Millonig A, Hegen H, Di Pauli F, et al. Natalizumab treatment reduces endothelial activity in MS patients. J Neuroimmunol. 2010;227:190–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Mellergård J, Edström M, Vrethem M, et al. Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler. 2010;16:208–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Khademi M, Bornsen L, Rafatnia F, et al. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers. Eur J Neurol. 2009;16:528–36.PubMedCrossRefGoogle Scholar
  55. 55.
    Gunnarsson M, Malmeström C, Axelsson M, et al. Axonal damage in relapsing remitting multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69:83–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Killestein J, Polman CH. Determinants of interferon β efficacy in patients with multiple sclerosis. Nat Rev Neurol. 2011;7:221–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre d’Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia ClínicaHospital Universitari Vall d’HebronBarcelonaSpain
  2. 2.Neurogenomiks Laboratory, Department of NeuroscienceUniversity of the Basque Country UPV/EHULeioaSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  4. 4.Neurogenomiks, Dpto de NeurocienciasUniversidad del País Vasco UPV/EHU, Parque Tecnológico de BizkaiaZamudioSpain

Personalised recommendations