Current Neurology and Neuroscience Reports

, Volume 11, Issue 3, pp 262–273 | Cite as

Recent Advances in the Genetics of Hereditary Axonal Sensory-Motor Neuropathies Type 2

  • Senda Ajroud-Driss
  • Han-Xiang Deng
  • Teepu Siddique
Article

Abstract

Hereditary axonal motor and sensory neuropathies or Charcot-Marie-Tooth disease type 2 (CMT2) are characterized clinically by distal muscle weakness and atrophy, sensory loss, and foot deformities. Conduction velocities are usually in the normal range or mildly slowed. The majority of CMT2 are autosomal-dominant but autosomal-recessive forms have been described. The number of genes associated with CMT2 have significantly increased in the past decade, with the gene causing CMT2C/SPSMA being the last one discovered. More than 10 genes are now associated with different subtypes of CMT2, which are classified from CMT2A to CMT2N. These genes have distinct functions, but some appear to be involved in common biological pathways, therefore, providing important clues for understanding the pathogenic mechanism of these heterogeneous disorders.

Keywords

Axonal CMT CMT2 HSMN CMT2A1 CMT2A2 CMT2B CMT2C CMT2D CMTF CMT2G CMTH CMT2I CMT2J CMT2K CMT2L CMT2M CMT2N CMT2B1 CMT2B2 Mitochondrial dynamic Endosomal trafficking Axonal transport RNA processing 

Notes

Disclosure

Conflicts of interest: S. Ajroud-Driss: none; H.-X. Deng: none; T. Siddique: has given expert testimony for a patient with CMT1A, and has received honoraria from the University of Texas for Grand Rounds Neurology.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Martyn CN, Hughes RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry. 1997;62:310–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Bienfait HM, Baas F, Koelman JH, et al. Phenotype of Charcot-Marie-Tooth disease Type 2. Neurology. 2007;68:1658–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001;105:587–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.PubMedCrossRefGoogle Scholar
  5. 5.
    • Chen H, Chan DC: Physiological functions of mitochondrial fusion. Ann N Y Acad Sci. 2010;1201: 21–5. This article highlights the role of mitofusin proteins in mitochondrial fusion and the importance of mitochondrial fusion for cellular integrity.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185–92.PubMedCrossRefGoogle Scholar
  7. 7.
    •• Misko A, Jiang S, Wegorzewska I, et al.: Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30: 4232–40. This paper provides the first evidence that mouse Mfn2 is directly involved in and is required for axonal mitochondrial transport, independent from its role in mitochondrial fusion establishing an additional role for MFN2.PubMedCrossRefGoogle Scholar
  8. 8.
    • Cartoni R, Arnaud E, Medard JJ, et al.: Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A. Brain 2010;133: 1460–9. This is the most recent mouse model of CMT2A2 published and seems to more closely recapitulate the clinical and pathologic human CMT2A2 phenotype.PubMedCrossRefGoogle Scholar
  9. 9.
    Lawson VH, Graham BV, Flanigan KM. Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology. 2005;65:197–204.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu D, Kennerson ML, Walizada G, et al. Charcot-Marie-Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations. Neurology. 2005;65:496–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ajroud-Driss S, Fecto F, Ajroud K, et al. A novel de novo MFN2 mutation causing CMT2A with upper motor neuron signs. Neurogenetics. 2009;10:359–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Zuchner S, De Jonghe P, Jordanova A, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006;59:276–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Chung KW, Kim SB, Park KD, et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain. 2006;129:2103–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Kwon JM, Elliott JL, Yee WC, et al. Assignment of a second Charcot-Marie-Tooth type II locus to chromosome 3q. Am J Hum Genet. 1995;57:853–8.PubMedGoogle Scholar
  15. 15.
    Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet. 2003;72:722–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA. 2006;103:11821–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Bucci C, Bakke O, Progida C. Rab7b and receptors trafficking. Commun Integr Biol. 2010;3:401–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Deinhardt K, Salinas S, Verastegui C, et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 2006;52:293–305.PubMedCrossRefGoogle Scholar
  19. 19.
    • Cogli L, Progida C, Lecci R, et al.: CMT2B-associated Rab7 mutants inhibit neurite outgrowth. Acta Neuropathol. 2010;120: 491–501. This study explains the pathophysiologic mechanism leading to CMT2B that can have an implication of therapeutic intervention.PubMedCrossRefGoogle Scholar
  20. 20.
    •• Yamauchi J, Torii T, Kusakawa S, et al.: The mood stabilizer valproic acid improves defective neurite formation caused by charcot-marie-tooth disease-associated mutant Rab7 through the JNK signaling pathway. J Neurosci Res. 2010;88: 3189–97. This is an important preclinical study demonstrating that inhibitor of JNK signaling pathway could be a therapeutic target for CMT2B.PubMedCrossRefGoogle Scholar
  21. 21.
    DeLong R, Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol. 1992;49:905–8.PubMedGoogle Scholar
  22. 22.
    Isozumi K, DeLong R, Kaplan J, et al. Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31. Hum Mol Genet. 1996;5:1377–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Dyck PJ, Litchy WJ, Minnerath S, et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol. 1994;35:608–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Klein CJ, Cunningham JM, Atkinson EJ, et al. The gene for HMSN2C maps to 12q23-24: a region of neuromuscular disorders. Neurology. 2003;60:1151–6.PubMedGoogle Scholar
  25. 25.
    McEntagart ME, Reid SL, Irrthum A, et al. Confirmation of a hereditary motor and sensory neuropathy IIC locus at chromosome 12q23-q24. Ann Neurol. 2005;57:293–7.PubMedCrossRefGoogle Scholar
  26. 26.
    • Deng HX, Klein CJ, Yan J, et al.: Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet. 2010;42: 165–9. This paper identifies TRPV4 as the gene mutated in SPSMA and CMT2C.PubMedCrossRefGoogle Scholar
  27. 27.
    • Auer-Grumbach M, Olschewski A, Papic L, et al.: Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet. 2010;42: 160–164. This paper also identifies TRPV4 as the causative gene for CMT2C, and highlights the phenotypic heterogeneity of this disease.PubMedCrossRefGoogle Scholar
  28. 28.
    • Landoure G, Zdebik AA, Martinez TL, et al.: Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet. 2010;42: 170–4. This paper also identifies TRPV4 as the causative gene for CMT2C.PubMedCrossRefGoogle Scholar
  29. 29.
    Auer-Grumbach M, De Jonghe P, Wagner K, et al. Phenotype-genotype correlations in a CMT2B family with refined 3q13-q22 locus. Neurology. 2000;55:1552–7.PubMedGoogle Scholar
  30. 30.
    Strotmann R, Harteneck C, Nunnenmacher K, et al. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2:695–702.PubMedCrossRefGoogle Scholar
  31. 31.
    •• Nilius B, Owsianik G: Channelopathies converge on TRPV4. Nat Genet. 2010;42: 98–100. This paper provides a comprehensive review on the function of TRPV4, the different phenotypes associated with its mutation, and tries to establish genotype-phenotype correlations.PubMedCrossRefGoogle Scholar
  32. 32.
    Klein CJ, Shi Y, Fecto F, et al.: Mutations and cytotoxic hypercalcemia in axonal Charcot-Matie-Tooth neuropathies. Neurology In Press.Google Scholar
  33. 33.
    Zimon M, Baets J, Auer-Grumbach M, et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain. 2010;133:1798–809.PubMedCrossRefGoogle Scholar
  34. 34.
    Rock MJ, Prenen J, Funari VA, et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008;40:999–1003.PubMedCrossRefGoogle Scholar
  35. 35.
    Krakow D, Vriens J, Camacho N, et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet. 2009;84:307–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang Y, Fu X, Gaiser S, et al. OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem. 2007;282:36561–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA. 2003;100:13698–703.PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem. 2003;278:22664–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Gevaert T, Vriens J, Segal A, et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117:3453–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Ionasescu V, Searby C, Sheffield VC, et al. Autosomal dominant Charcot-Marie-Tooth axonal neuropathy mapped on chromosome 7p (CMT2D). Hum Mol Genet. 1996;5:1373–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Antonellis A, Ellsworth RE, Sambuughin N, et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003;72:1293–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Chihara T, Luginbuhl D, Luo L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci. 2007;10:828–37.PubMedCrossRefGoogle Scholar
  43. 43.
    Mersiyanova IV, Perepelov AV, Polyakov AV, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet. 2000;67:37–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Miltenberger-Miltenyi G, Janecke AR, Wanschitz JV, et al. Clinical and electrophysiological features in Charcot-Marie-Tooth disease with mutations in the NEFL gene. Arch Neurol. 2007;64:966–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Fabrizi GM, Cavallaro T, Angiari C, et al. Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology. 2004;62:1429–31.PubMedGoogle Scholar
  46. 46.
    Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. J Neurobiol. 2004;58:131–48.PubMedCrossRefGoogle Scholar
  47. 47.
    Perez-Olle R, Jones ST, Liem RK. Phenotypic analysis of neurofilament light gene mutations linked to Charcot-Marie-Tooth disease in cell culture models. Hum Mol Genet. 2004;13:2207–20.PubMedCrossRefGoogle Scholar
  48. 48.
    •• Dequen F, Filali M, Lariviere RC, et al.: Reversal of neuropathy phenotypes in conditional mouse model of Charcot-Marie-Tooth disease type 2E. Hum Mol Genet. 2010;19: 2616–29. In this paper, the doxycycline-mediated conditional repression of transgenic expression of mutant human NF-LP22S was found to reverse the CMT2 phenotype in a mouse model of CMT2E.PubMedCrossRefGoogle Scholar
  49. 49.
    Ismailov SM, Fedotov VP, Dadali EL, et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2F) maps to chromosome 7q11-q21. Eur J Hum Genet. 2001;9:646–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Evgrafov OV, Mersiyanova I, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet. 2004;36:602–6.PubMedCrossRefGoogle Scholar
  51. 51.
    • Solla P, Vannelli A, Bolino A, et al.: Heat shock protein 27 R127W mutation: evidence of a continuum between axonal Charcot-Marie-Tooth and distal hereditary motor neuropathy. J Neurol Neurosurg Psychiatry 2010;81: 958–62. This paper highlights the phenotypic heterogeneity of CMT associated with HSP27 gene mutations.PubMedCrossRefGoogle Scholar
  52. 52.
    Garrido C, Brunet M, Didelot C, et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5:2592–601.PubMedCrossRefGoogle Scholar
  53. 53.
    Ackerley S, James PA, Kalli A, et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet. 2006;15:347–54.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhai J, Lin H, Julien JP, Schlaepfer WW. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet. 2007;16:3103–16.PubMedCrossRefGoogle Scholar
  55. 55.
    Almeida-Souza L, Goethals S, de Winter V, et al. Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem. 2010;285:12778–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Nelis E, Berciano J, Verpoorten N, et al. Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12-q13.3. J Med Genet. 2004;41:193–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Hayasaka K, Himoro M, Sato W, et al. Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet. 1993;5:31–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Shy ME, Jani A, Krajewski K, et al. Phenotypic clustering in MPZ mutations. Brain. 2004;127:371–84.PubMedCrossRefGoogle Scholar
  59. 59.
    De Jonghe P, Timmerman V, Ceuterick C, et al. The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. Brain. 1999;122(Pt 2):281–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakamura N, Kawamura N, Tateishi T, et al. Predominant parasympathetic involvement in a patient with Charcot-Marie-Tooth disease caused by the MPZ Thr124Met mutation. Rinsho Shinkeigaku. 2009;49:582–5.PubMedGoogle Scholar
  61. 61.
    Spiryda LB, Colman DR. Protein zero, a myelin IgCAM, induces physiologically operative tight junctions in nonadhesive carcinoma cells. J Neurosci Res. 1998;54:282–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Martini R, Zielasek J, Toyka KV, et al. Protein zero (P0)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat Genet. 1995;11:281–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Shy ME. Peripheral neuropathies caused by mutations in the myelin protein zero. J Neurol Sci. 2006;242:55–66.PubMedCrossRefGoogle Scholar
  64. 64.
    • Mandich P, Fossa P, Capponi S, et al.: Clinical features and molecular modelling of novel MPZ mutations in demyelinating and axonal neuropathies. Eur J Hum Genet. 2009;17: 1129–34. Using molecular modeling the authors try to establish genotype-phenotype correlations in CMT due to MPZ mutations.PubMedCrossRefGoogle Scholar
  65. 65.
    Barhoumi C, Amouri R, Ben Hamida C, et al. Linkage of a new locus for autosomal recessive axonal form of Charcot-Marie-Tooth disease to chromosome 8q21.3. Neuromuscul Disord. 2001;11:27–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Claramunt R, Pedrola L, Sevilla T, et al. Genetics of Charcot-Marie-Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect. J Med Genet. 2005;42:358–65.PubMedCrossRefGoogle Scholar
  67. 67.
    • Crimella C, Tonelli A, Airoldi G, et al.: The GST domain of GDAP1 is a frequent target of mutations in the dominant form of axonal Charcot Marie Tooth type 2 K. J Med Genet. 2010;47: 712–6. This paper establish the GST domain of GDAP1 as a mutation hot spot for CMT2K.PubMedCrossRefGoogle Scholar
  68. 68.
    • Sevilla T, Jaijo T, Nauffal D, et al.: Vocal cord paresis and diaphragmatic dysfunction are severe and frequent symptoms of GDAP1-associated neuropathy. Brain 2008;131: 3051–61. This paper describes the phenotypic manifestation of GDAP1 mutations.PubMedCrossRefGoogle Scholar
  69. 69.
    Baxter RV, Ben Othmane K, Rochelle JM, et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet. 2002;30:21–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Niemann A, Ruegg M, La Padula V, et al. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170:1067–78.PubMedCrossRefGoogle Scholar
  71. 71.
    Niemann A, Wagner KM, Ruegg M, Suter U. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis. 2009;36:509–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Tang BS, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet. 2004;114:527–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet. 2005;116:222–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Irobi J, De Jonghe P, Timmerman V. Molecular genetics of distal hereditary motor neuropathies. Hum Mol Genet. 2004;13(Spec No 2):R195–202.PubMedCrossRefGoogle Scholar
  75. 75.
    Carra S, Sivilotti M, Chavez Zobel AT, et al. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet. 2005;14:1659–69.PubMedCrossRefGoogle Scholar
  76. 76.
    • Irobi J, Almeida-Souza L, Asselbergh B, et al.: Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet. 2010;19: 3254–65. This study demonstrates the selective vulnerability of motor neuron to HSPB8 and explains the predominantly motor phenotype associated with this gene.PubMedCrossRefGoogle Scholar
  77. 77.
    Zuchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet. 2005;37:289–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Claeys KG, Zuchner S, Kennerson M, et al. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain. 2009;132:1741–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005;37:1207–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Fabrizi GM, Ferrarini M, Cavallaro T, et al. Two novel mutations in dynamin-2 cause axonal Charcot-Marie-Tooth disease. Neurology. 2007;69:291–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Hinshaw JE. Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol. 2000;16:483–519.PubMedCrossRefGoogle Scholar
  82. 82.
    • Durieux AC, Prudhon B, Guicheney P, Bitoun M: Dynamin 2 and human diseases. J Mol Med. 2010;88: 339–50. This is a comprehensive review on the pathophysiology of DNM2 mutations and the different phenotypes associated with it.PubMedCrossRefGoogle Scholar
  83. 83.
    • Latour P, Thauvin-Robinet C, Baudelet-Mery C, et al.: A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet. 2010;86: 77–82. The authors report that AARS is the causative gene of CMT2N.PubMedCrossRefGoogle Scholar
  84. 84.
    Jordanova A, Irobi J, Thomas FP, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet. 2006;38:197–202.PubMedCrossRefGoogle Scholar
  85. 85.
    De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet. 2002;70:726–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Bouhouche A, Benomar A, Birouk N, et al. A locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 1q21.2-q21.3. Am J Hum Genet. 1999;65:722–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Bouhouche A, Birouk N, Azzedine H, et al. Autosomal recessive axonal Charcot-Marie-Tooth disease (ARCMT2): phenotype-genotype correlations in 13 Moroccan families. Brain. 2007;130:1062–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Hamadouche T, Poitelon Y, Genin E, et al. Founder effect and estimation of the age of the c.892 C > T (p.Arg298Cys) mutation in LMNA associated to Charcot-Marie-Tooth subtype CMT2B1 in families from North Western Africa. Ann Hum Genet. 2008;72:590–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Chaouch M, Allal Y, De Sandre-Giovannoli A, et al. The phenotypic manifestations of autosomal recessive axonal Charcot-Marie-Tooth due to a mutation in Lamin A/C gene. Neuromuscul Disord. 2003;13:60–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Tazir M, Azzedine H, Assami S, et al. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain. 2004;127:154–63.PubMedCrossRefGoogle Scholar
  91. 91.
    Bernard R, De Sandre-Giovannoli A, Delague V, Levy N. Molecular genetics of autosomal-recessive axonal Charcot-Marie-Tooth neuropathies. Neuromolecular Med. 2006;8:87–106.PubMedCrossRefGoogle Scholar
  92. 92.
    Leal A, Morera B, Del Valle G, et al. A second locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 19q13.3. Am J Hum Genet. 2001;68:269–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Berghoff C, Berghoff M, Leal A, et al. Clinical and electrophysiological characteristics of autosomal recessive axonal Charcot-Marie-Tooth disease (ARCMT2B) that maps to chromosome 19q13.3. Neuromuscul Disord. 2004;14:301–6.PubMedCrossRefGoogle Scholar
  94. 94.
    • Leal A, Huehne K, Bauer F, et al.: Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Neurogenetics 2009, 10:275–87. This paper establish MED25 as the causative gene of CMT2B2.PubMedCrossRefGoogle Scholar
  95. 95.
    •• Lupski JR, Reid JG, Gonzaga-Jauregui C, et al.: Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med. 2010, 362:1181–91. This is the first report of the use next-generation sequencing for gene hunting in small families with CMT.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Senda Ajroud-Driss
    • 1
    • 2
  • Han-Xiang Deng
    • 1
    • 3
  • Teepu Siddique
    • 1
    • 4
    • 5
  1. 1.Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical NeurosciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.ChicagoUSA
  3. 3.Davee Department of Neurology and Clinical NeurosciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Les Turner ALS Foundation/Herbert C. Wenske, Davee Department of Neurology and Clinical NeurosciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.Department of Cell and Molecular Biology, Davee Department of Neurology and Clinical NeurosciencesNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations