Current Neurology and Neuroscience Reports

, Volume 11, Issue 2, pp 235–241 | Cite as

The Pathophysiologic Basis of Secondary Narcolepsy and Hypersomnia

  • Takashi Kanbayashi
  • Yohei Sagawa
  • Fumi Takemura
  • Sachiko-Uemura Ito
  • Ko Tsutsui
  • Yasuo Hishikawa
  • Seiji NishinoEmail author


The symptoms of narcolepsy can occur during the course of other neurologic conditions (ie, symptomatic narcolepsy). Inherited disorders, tumors, and head trauma were the three most frequent causes for symptomatic narcolepsy. Other causes include multiple sclerosis (MS), vascular disorders, and encephalitis. Cerebrospinal fluid hypocretin-1 measures were carried out in some recent cases with symptomatic narcolepsy, and moderate decreases in hypocretin levels were seen in a large majority of these cases. Excessive daytime sleepiness (EDS) in these symptomatic cases was sometimes reversible with an improvement of the causative neurologic disorder and with an improvement of the hypocretin (orexin) status. Recently, we found that several symptomatic narcoleptic cases with MS show unique bilateral symmetric hypothalamic lesions associated with significant hypocretin ligand deficiency. In addition, these patients often share the clinical characteristics of neuromyelitis optica (NMO) and the detection of NMO-IgG (or anti-aquaporin-4 [AQP4] antibodies), suggesting a new clinical entity. Further studies of the involvement of the hypocretin system in symptomatic narcolepsy and EDS are helpful to understand the pathophysiologic mechanisms for occurrence of EDS and cataplexy.


Narcolepsy Hypocretin Orexin EDS REM sleep Cataplexy NMO MS CSF 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Nishino S, Kanbayashi T: Symptomatic narcolepsy, cataplexy, and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med Rev 2005, 9:269–310.PubMedCrossRefGoogle Scholar
  2. 2.
    Ritchie C, Okuro M, Kanbayashi T, et al.: Hypocretin ligand deficiency in narcolepsy: recent basic and clinical insights. Curr Neurol Neurosci Rep. 2010 May;10(3):180–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Verma A, Anand V, Verma NP: Sleep disorders in chronic traumatic brain injury. J Clin Sleep Med 2007, 3:357–362.PubMedGoogle Scholar
  4. 4.
    von Economo C: Encephalitis lethargica: its sequelae and treatment 1931.Google Scholar
  5. 5.
    von Economo C: Sleep as a problem of localization. J Nerv Ment Dis 1930;71(3):249–59.CrossRefGoogle Scholar
  6. 6.
    Mamelak M: A perspective on narcolepsy. Encephale 1992; 18(4):347–51.PubMedGoogle Scholar
  7. 7.
    Siegel J: Brainstem mechanisms generating REM sleep. In: Kryger MR, Roth T, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia, PA: W.B. Saunders; 2000. p. 112–33.Google Scholar
  8. 8.
    Aldrich M, Naylor M: Narcolepsy associated with lesions of the diencephalon. Neurology 1989;39(11):1505–8.PubMedGoogle Scholar
  9. 9.
    Nishino S, Ripley B, Overeem S, et al.: Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000, 355:39–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Peyron C, Faraco J, Rogers W, et al.: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000, 6:991–997.PubMedCrossRefGoogle Scholar
  11. 11.
    Thannickal T, Moore R, Nienhuis R, et al.: Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000;27(3):469–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Scammell T, Nishino S, Mignot E, Saper C: Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 2001;56(12):1751–3.PubMedGoogle Scholar
  13. 13.
    Marcus C, Mignot E: Letter to the editor regarding our previous publication: Secondary narcolepsy in children with brain tumors. Sleep 2002;25:435–9.PubMedGoogle Scholar
  14. 14.
    Nishino S, Kanbayashi T, Fujiki N, et al.: CSF hypocretin levels in Guillain-Barre syndrome and other inflammatory neuropathies. Neurology 2003, 61:823–825.PubMedGoogle Scholar
  15. 15.
    Overeem S, Dalmau J, Bataller L, et al.: Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology 2004;62(1):138–40.PubMedGoogle Scholar
  16. 16.
    • Kanbayashi T, Shimohata T, Nakashima I, et al.: Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis: new neurochemical and immunological implications. Arch Neurol 2009, 66(12):1563–1566. The authors report a significant recent study of symptomatic narcolepsy in patients diagnosed with immune-mediated neurologic condition MS with bilateral hypothalamic inflammatory lesions. The findings specifically link the presence of anti-AQP4 antibody and the probability of immune attack in hypothalamic periventricular regions to reduced CSF hypocretin-1 levels. Further, they suggest that additional antibody-mediated mechanisms also contribute to secondary hypocretin system impairment, manifesting in EDS symptoms.PubMedCrossRefGoogle Scholar
  17. 17.
    Poirier G, Montplaisir J, Dumont M, et al.: Clinical and sleep laboratory study of narcoleptic symptoms in multiple sclerosis. Neurology 1987;37(4):693–5.PubMedGoogle Scholar
  18. 18.
    Ripley B, Fujiki N, Okura M, et al.: CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 2001, 57:2253–2258.PubMedGoogle Scholar
  19. 19.
    Tachibana N, Howar RS, Hirsch NP, et al.: Sleep problems in multiple sclerosis. Eur Neurol 1994, 34:320–323.PubMedCrossRefGoogle Scholar
  20. 20.
    Amiry-Moghaddam M, Ottersen, OP: The molecular basis of water transport in the brain. Nat Rev Neurosci 2003, 4:991–1001.PubMedCrossRefGoogle Scholar
  21. 21.
    Pittock SJ, Weinshenker BG, Lucchinetti CF, et al.: Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006 Jul;63(7):964–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Lennon VA, Kryzer TJ, Pittock SJ, et al.: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202:473–477.PubMedCrossRefGoogle Scholar
  23. 23.
    Nokura K, Kanbayashi T, Ozeki T, et al.: Hypersomnia secondary to hypothalamic damage and CSF Orexin-A level in four cases. Sleep 2004; 27(Suppl.):A249.Google Scholar
  24. 24.
    Tohyama J, Kanazawa O, Akasaka N, et al.: A case of bilateral paramedian thalamic infarction in childhood with the sensory disturbance and the sensory loss of taste. No To Hattatsu 2004;36(1):65–9.PubMedGoogle Scholar
  25. 25.
    Guilleminault C, Quera-Salva M, Goldberg M: Pseudohypersomnia and pre-sleep behaviour with bilateral paramedian thalamic lesions. Brain 1993;116(6):1549–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Bassetti C, Mathis J, Gugger M, et al.: Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol 1996;39(4):471–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Takashi Kanbayashi
    • 1
  • Yohei Sagawa
    • 1
    • 2
  • Fumi Takemura
    • 1
  • Sachiko-Uemura Ito
    • 3
  • Ko Tsutsui
    • 1
  • Yasuo Hishikawa
    • 1
  • Seiji Nishino
    • 2
    Email author
  1. 1.Department of NeuropsychiatryAkita University School of MedicineAkitaJapan
  2. 2.Center for Narcolepsy, Stanford School of MedicineStanford University Sleep and Circadian Neurobiology LaboratoryPalo AltoUSA
  3. 3.Course of Physical TherapySchool of Health Sciences, Akita UniversityAkitaJapan

Personalised recommendations