Current Neurology and Neuroscience Reports

, Volume 11, Issue 1, pp 52–60

Implications of Pharmacogenetic Testing for Patients Taking Warfarin or Clopidogrel

Article
  • 158 Downloads

Abstract

Our knowledge of the pharmacogenetics of warfarin and clopidogrel continues to expand as we learn more about the individual genetic variations that contribute to the drugs’ efficacy and toxicity. We aim to review the recent developments in the field and discuss the clinical implications for the treatment of ischemic stroke patients. Despite recent advances, there is still insufficient data to suggest that routine genetic testing improves outcomes in patients treated with warfarin or clopidogrel for prevention of stroke.

Keywords

Pharmacogenetics Warfarin Clopidogrel Testing Primary stroke prevention Secondary stroke prevention Polymorphism Resistance Variant Anticoagulation Platelet response Drug response Safety CYP2C19 CYP2C9 VKORC1 Treatment algorithm ABCB1 P2RY12 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Phillips KA, Veenstra DL, Oren E, et al.: Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA. 2001 Nov 14;286(18):2270–9.CrossRefPubMedGoogle Scholar
  2. 2.
    • Moyer TP, O’Kane DJ, Baudhuin LM, et al.: Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc. 2009 Dec;84(12):1079–94. This is an excellent comprehensive review of warfarin pharmacogenetics.CrossRefPubMedGoogle Scholar
  3. 3.
    • Gage BF, Eby C, Johnson JA, et al.: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008 Sep;84(3):326–31. This is a state-of-the-art article that demonstrates many of the important scientific approaches to pharmacogenetics, and the data upon which the algorithm at http://www.warfarindosing.org are mostly based upon.CrossRefPubMedGoogle Scholar
  4. 4.
    Manolopoulos VG, Ragia G, Tavridou A: Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics. 2010 Apr;11(4):493–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Cooper GM, Johnson JA, Langaee TY, et al.: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008 Aug 15;112(4):1022–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Wadelius M, Chen LY, Lindh JD, et al.: The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009 Jan 22;113(4):784–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Lenzini P, Wadelius M, Kimmel S, et al.: Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010 May;87(5):572–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Aithal GP, Day CP, Kesteven PJ, Daly AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999 Feb 27;353(9154):717–9.CrossRefPubMedGoogle Scholar
  9. 9.
    CYP2C9 allele nomenclature. [cited 2010 August 23]; Available from: http://www.cypalleles.ki.se/cyp2c9.htm.
  10. 10.
    Sanderson S, Emery J, Higgins J: CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med. 2005 Feb;7(2):97–104.CrossRefPubMedGoogle Scholar
  11. 11.
    Lindh JD, Holm L, Andersson ML, Rane A: Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009 Apr;65(4):365–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Scott SA, Khasawneh R, Peter I, et al.: Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics. 2010 Jun;11(6):781–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Rieder MJ, Reiner AP, Gage BF, et al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005 Jun 2;352(22):2285–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Yang L, Ge W, Yu F, Zhu H: Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement—a systematic review and meta analysis. Thromb Res. 2010 Apr;125(4):e159–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Perini JA, Struchiner CJ, Silva-Assuncao E, Suarez-Kurtz G: Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin Pharmacol Ther. 2010 Apr;87(4):417–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Takeuchi F, McGinnis R, Bourgeois S, et al.: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009 Mar;5(3):e1000433.CrossRefPubMedGoogle Scholar
  17. 17.
    Voora D, Koboldt DC, King CR, et al.: A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010 Apr;87(4):445–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Rieder MJ, Reiner AP, Rettie AE: Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost. 2007 Nov;5(11):2227–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Fihn SD, McDonell M, Martin D, et al.: Risk factors for complications of chronic anticoagulation. A multicenter study. Warfarin Optimized Outpatient Follow-up Study Group. Ann Intern Med. 1993 Apr 1;118(7):511–20.PubMedGoogle Scholar
  20. 20.
    Higashi MK, Veenstra DL, Kondo LM, et al.: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002 Apr 3;287(13):1690–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Li C, Schwarz UI, Ritchie MD, et al.: Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood. 2009 Apr 23;113(17):3925–30.CrossRefPubMedGoogle Scholar
  22. 22.
    International Warfarin Pharmacogenetics C, Klein TE, Altman RB, et al.: Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009 Feb 19;360(8):753–64.Google Scholar
  23. 23.
    Hillman MA, Wilke RA, Yale SH, et al.: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res. 2005 Aug;3(3):137–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Anderson JL, Horne BD, Stevens SM, et al.: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007 Nov 27;116(22):2563–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Caraco Y, Blotnick S, Muszkat M: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008 Mar;83(3):460–70.CrossRefPubMedGoogle Scholar
  26. 26.
    FDA. FDA Approves Updated Warfarin (Coumadin) Prescribing Information. 2007 [cited 2010 August 30]; Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108967.htm.
  27. 27.
    Eckman MH, Rosand J, Greenberg SM, Gage BF: Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med. 2009 Jan 20;150(2):73–83.PubMedGoogle Scholar
  28. 28.
    CMS. Decision Memo for Pharmacogenomic Testing for Warfarin Response (CAG-00400N). 2009 [cited 2010 August 30]; Available from: https://www.cms.gov/mcd/viewdecisionmemo.asp?id=224.
  29. 29.
    Ansell J, Hirsh J, Hylek E, et al.: Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008 Jun;133(6 Suppl):160S–98S.CrossRefPubMedGoogle Scholar
  30. 30.
    Flockhart DA, O’Kane D, Williams MS, et al.: Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med. 2008 Feb;10(2):139–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Steinhubl SR: Genotyping, clopidogrel metabolism, and the search for the therapeutic window of thienopyridines. Circulation. 2010 Feb 2;121(4):481–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Snoep JD, Hovens MM, Eikenboom JC, et al.: Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J. 2007 Aug;154(2):221–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Shuldiner AR, O’Connell JR, Bliden KP, et al.: Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009 Aug 26;302(8):849–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al.: Variability in platelet aggregation following sustained aspirin and clopidogrel treatment in patients with coronary heart disease and influence of the 807 C/T polymorphism of the glycoprotein Ia gene. Am J Cardiol. 2005 Oct 15;96(8):1095–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Simon T, Verstuyft C, Mary-Krause M, et al.: Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009 Jan 22;360(4):363–75.CrossRefPubMedGoogle Scholar
  36. 36.
    Kazui M, Nishiya Y, Ishizuka T, et al.: Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010 Jan;38(1):92–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Desta Z, Zhao X, Shin JG, Flockhart DA: Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913–58.CrossRefPubMedGoogle Scholar
  38. 38.
    Sim SC, Risinger C, Dahl ML, et al.: A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006 Jan;79(1):103–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Sibbing D, Stegherr J, Latz W, et al.: Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J. 2009 Apr;30(8):916–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Collet JP, Hulot JS, Pena A, et al.: Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009 Jan 24;373(9660):309–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Mega JL, Close SL, Wiviott SD, et al.: Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009 Jan 22;360(4):354–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Giusti B, Gori AM, Marcucci R, et al.: Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol. 2009 Mar 15;103(6):806–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Trenk D, Hochholzer W, Fromm MF, et al.: Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol. 2008 May 20;51(20):1925–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Yusuf S, Zhao F, Mehta SR, et al.: Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001 Aug 16;345(7):494–502.CrossRefPubMedGoogle Scholar
  45. 45.
    • Pare G, Mehta SR, Yusuf S, et al.: Effects of CYP2C19 Genotype on Outcomes of Clopidogrel Treatment. N Engl J Med. 2010:1–10. This is a a recent large well-designed retrospective approach to evaluating the influence of genetics on response to clopidogrel.Google Scholar
  46. 46.
    Sibbing D, Koch W, Gebhard D, et al.: Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010 Feb 2;121(4):512–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Suh JW, Koo BK, Zhang SY, et al.: Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ. 2006 Jun 6;174(12):1715–22.PubMedGoogle Scholar
  48. 48.
    Ziegler S, Schillinger M, Funk M, et al.: Association of a functional polymorphism in the clopidogrel target receptor gene, P2Y12, and the risk for ischemic cerebrovascular events in patients with peripheral artery disease. Stroke. 2005 Jul;36(7):1394–9.CrossRefPubMedGoogle Scholar
  49. 49.
    • Holmes DR, Jr., Dehmer GJ, Kaul S, et al.: ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. Jul 20;56(4):321–41. This is a comprehensive review of the recent literature, the FDA warnings, and discussion of some potential solutions for providers who diagnose patients with clopidogrel resistance.Google Scholar
  50. 50.
    Wiviott SD, Braunwald E, McCabe CH, et al.: Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007 Nov 15;357(20):2001–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Sacco RL, Diener HC, Yusuf S, et al.: Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med. 2008 Sep 18;359(12):1238–51.CrossRefPubMedGoogle Scholar
  52. 52.
    FDA. Reduced effectiveness of clopidogrel in patients who are poor metabolizers of the drug. [FDA Drug Safety Communication]. 2010 March 12, 2010.Google Scholar
  53. 53.
    Kroetz DL, Pauli-Magnus C, Hodges LM, et al.: Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics. 2003 Aug;13(8):481–94.CrossRefPubMedGoogle Scholar
  54. 54.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007 Dec;116(3):496–526.CrossRefPubMedGoogle Scholar
  55. 55.
    Xie HG, Kim RB, Wood AJ, Stein CM: Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol. 2001;41:815–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of NeurologyHarborview Medical CenterSeattleUSA

Personalised recommendations