Current Neurology and Neuroscience Reports

, Volume 11, Issue 1, pp 28–34 | Cite as

Use of MRI in the Assessment of Patients with Stroke

  • Richard E. Burgess
  • Chelsea S. Kidwell


Multimodal neuroimaging is assuming an increasingly important role in the initial evaluation and management of acute stroke patients in parallel with the expansion of therapeutic options. Multimodal MRI can identify the type of stroke (ischemia or hemorrhage), severity and location of the lesion, the patency of the intracranial vessels, the degree of cerebral perfusion, and the presence and size of the ischemic penumbra. This information can be used to guide both acute and long-term treatment decisions for stroke patients.


Stroke MRI DWI PWI MRA Ischemia Hemorrhage Penumbra 



C.S. Kidwell has grants from the National Institutes of Health (NIH)/National Institute of Neurological Diseases and Stroke (NINDS) numbers NS044378 (MR RESCUE Clinical Trial), NS057405 (Stroke Disparities Program), and NS069763 (Ethnic/Racial Variations in Intracerebral Hemorrhage).


Conflicts of Interest: R. Burgess: none; C.S. Kidwell: is a consultant for Embrella Cardiovascular, Inc.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Rowley HA: The four Ps of acute stroke imaging: parenchyma, pipes, perfusion, and penumbra. AJNR Am J Neuroradiol 2001, 22:599–601.PubMedGoogle Scholar
  2. 2.
    Schlaug G, Siewert B, Benfield A, et al.: Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997, 49:113–119.PubMedGoogle Scholar
  3. 3.
    •• Chalela JA, Kidwell CS, Nentwich LM, et al.: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007, 369:293–298. This article demonstrate the utility of DWI compared with CT for detecting stroke.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee LJ, Kidwell CS, Alger J, et al.: Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 2000, 31:1081–1089.PubMedGoogle Scholar
  5. 5.
    Kidwell CS, Alger JR, Di Salle F, et al.: Diffusion MRI in patients with transient ischemic attacks. Stroke 1999, 30:1174–1180.PubMedGoogle Scholar
  6. 6.
    •• Easton JD, Saver JL, Albers GW, et al.: Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy Of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 2009, 40:2276–2293. This article revised the approach to defining TIA and stroke using a tissue-based rather than time-based definition.CrossRefPubMedGoogle Scholar
  7. 7.
    Crisostomo RA, Garcia MM, Tong DC: Detection of diffusion-weighted MRI abnormalities in patients with transient ischemic attack: correlation with clinical characteristics. Stroke 2003, 34:932–937.CrossRefPubMedGoogle Scholar
  8. 8.
    Purroy F, Montaner J, Rovira A, et al.: Higher risk of further vascular events among transient ischemic attack patients with diffusion-weighted imaging acute ischemic lesions. Stroke 2004, 35:2313–2319.CrossRefPubMedGoogle Scholar
  9. 9.
    Calvet D, Touze E, Oppenheim C, et al.: DWI lesions and TIA etiology improve the prediction of stroke after TIA. Stroke 2009, 40:187–192.CrossRefPubMedGoogle Scholar
  10. 10.
    Mlynash M, Olivot JM, Tong DC, et al.: Yield of combined perfusion and diffusion mr imaging in hemispheric TIA. Neurology 2009, 72:1127–1133.CrossRefPubMedGoogle Scholar
  11. 11.
    Scarabino T, Carriero A, Giannatempo GM, et al.: Contrast-enhanced MR angiography (CE MRA) in the study of the carotid stenosis: comparison with digital subtraction angiography (DSA). J Neuroradiol 1999, 26:87–91.PubMedGoogle Scholar
  12. 12.
    Rasanen HT, Manninen HI, Vanninen RL, et al.: Mild carotid artery atherosclerosis: assessment by 3-dimensional time-of-flight magnetic resonance angiography, with reference to intravascular ultrasound imaging and contrast angiography. Stroke 1999, 30:827–833.PubMedGoogle Scholar
  13. 13.
    Nederkoorn PJ, Van Der Graaf Y, Hunink MG: Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 2003, 34:1324–1332.CrossRefPubMedGoogle Scholar
  14. 14.
    Zaharchuk G, Straka M, Marks MP, et al.: Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010, 63:1548–1556.CrossRefPubMedGoogle Scholar
  15. 15.
    van Laar PJ, van der Grond J, Hendrikse J: Brain perfusion territory imaging: Methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 2008, 246:354–364.CrossRefPubMedGoogle Scholar
  16. 16.
    Kidwell CS, Alger JR, Saver JL: Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003, 34:2729–2735.CrossRefPubMedGoogle Scholar
  17. 17.
    The Internet Stroke Center: Stroke Trials Registry—MR Rescue: Magnetic Resonance and Recanalization of Stroke Clots Using Embolectomy. Available at Accessed September 2010.
  18. 18.
    Köhrmann M, Jüttler E, Fiebach JB, et al.: MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 2006, 5:661–667.CrossRefPubMedGoogle Scholar
  19. 19.
    Albers GW, Thijs VN, Wechsler L, et al.: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006, 60:508–517.CrossRefPubMedGoogle Scholar
  20. 20.
    Kakuda W, Lansberg MG, Thijs VN, et al.: Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 2008, 28:887–891.CrossRefPubMedGoogle Scholar
  21. 21.
    Hacke W, Albers G, Al-Rawi Y, et al.: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005, 36:66–73.CrossRefPubMedGoogle Scholar
  22. 22.
    Furlan AJ, Eyding D, Albers GW, et al.: Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37:1227–1231.CrossRefPubMedGoogle Scholar
  23. 23.
    •• Davis SM, Donnan GA, Parsons MW, et al.: Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (epithet): a placebo-controlled randomised trial. Lancet Neurol 2008, 7:299–309. This is the first randomized trial using MRI screening to select patients for treatment with IV tPA up to 6 hours.CrossRefPubMedGoogle Scholar
  24. 24.
    Parsons MW, Christensen S, McElduff P, et al.: Pretreatment diffusion- and perfusion-MR lesion volumes have a crucial influence on clinical response to stroke thrombolysis. J Cereb Blood Flow Metab 2010, 30:1214–1225.CrossRefPubMedGoogle Scholar
  25. 25.
    Kidwell CS, Chalela JA, Saver JL, et al.: Comparison of MRI and ct for detection of acute intracerebral hemorrhage. JAMA 2004, 292:1823–1830.CrossRefPubMedGoogle Scholar
  26. 26.
    Cordonnier C, Al-Shahi Salman R, Wardlaw J: Spontaneous brain microbleeds: Systematic review, subgroup analyses and standards for study design and reporting. Brain 2007, 130:1988–2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Singer OC, Humpich MC, Fiehler J, et al.: Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 2008, 63:52-60.CrossRefPubMedGoogle Scholar
  28. 28.
    Lansberg MG, Thijs VN, Bammer R, et al.: Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 2007, 38:2275–2278.CrossRefPubMedGoogle Scholar
  29. 29.
    Campbell BC, Christensen S, Foster SJ, et al.: Visual assessment of perfusion-diffusion mismatch is inadequate to select patients for thrombolysis. Cerebrovasc Dis 2010, 29:592–596.CrossRefPubMedGoogle Scholar
  30. 30.
    Bang OY, Saver JL, Alger JR, et al.: Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke 2009, 40:454–461.CrossRefPubMedGoogle Scholar
  31. 31.
    Kastrup A, Groschel K, Ringer TM, et al.: Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke 2008, 39:2385–2387.CrossRefPubMedGoogle Scholar
  32. 32.
    Broderick JP, Diringer MN, Hill MD, et al.: Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke 2007, 38:1072–1075.CrossRefPubMedGoogle Scholar
  33. 33.
    Kidwell CS, Wintermark M: Imaging of intracranial haemorrhage. Lancet Neurol 2008, 7:256–267.CrossRefPubMedGoogle Scholar
  34. 34.
    Chu K, Kang DW, Yoon BW, Roh JK: Diffusion-weighted magnetic resonance in cerebral venous thrombosis. Arch Neurol 2001, 58:1569–1576.CrossRefPubMedGoogle Scholar
  35. 35.
    Yuh WT, Simonson TM, Wang AM, et al.: Venous sinus occlusive disease: MR findings. AJNR Am J Neuroradiol 1994, 15:309–316.PubMedGoogle Scholar
  36. 36.
    Idbaih A, Boukobza M, Crassard I, et al.: MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006, 37:991–995.CrossRefPubMedGoogle Scholar
  37. 37.
    Selim M, Fink J, Linfante I, et al.: Diagnosis of cerebral venous thrombosis with echo-planar t2*-weighted magnetic resonance imaging. Arch Neurol 2002, 59:1021–1026.CrossRefPubMedGoogle Scholar
  38. 38.
    Santhosh K, Kesavadas C, Thomas B, et al.: Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 2009, 64:74–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Wintermark M, Maeder P, Verdun FR, et al.: Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol 2000, 21:1881–1884.PubMedGoogle Scholar
  40. 40.
    Smith WS, Roberts HC, Chuang NA, et al.: Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR Am J Neuroradiol 2003, 24:688–690.PubMedGoogle Scholar
  41. 41.
    U.S. Food and Drug Administration: Information for Healthcare Professionals Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (marketed as Magnevist, Multihance, Omniscan, Optimark, Prohance). Available at Accessed September 2010.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Georgetown University Medical CenterWashingtonUSA

Personalised recommendations