Current Neurology and Neuroscience Reports

, Volume 9, Issue 5, pp 411–417 | Cite as

Axonal degeneration in multiple sclerosis: The mitochondrial hypothesis

  • Kimmy G. Su
  • Gary Banker
  • Dennis Bourdette
  • Michael Forte


Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting more than 2 million people worldwide. Traditionally considered an inflammatory demyelinating disease, recent evidence now points to axonal degeneration as crucial to the development of irreversible disability. Studies show that axonal degeneration occurs throughout the entire course of MS. Although the specific mechanisms causing axonal damage may differ at various stages, mitochondrial failure seems to be a common underlying theme. This review addresses the mitochondrial hypothesis for axonal degeneration in MS, highlighting the mechanisms by which mitochondrial dysfunction leads to axonal disruption in acute inflammatory lesions and the chronic axonopathy in progressive MS. Emphasis is placed on Ca2+, free radical production, and permeability transition pore opening as key players in mitochondrial failure, axonal transport impairment, and subsequent axonal degeneration. In addition, the role of mitochondria as therapeutic targets for neuroprotection in MS is addressed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Noseworthy J, Lucchinetti C, Rodriguez M, et al.: Multiple sclerosis. N Engl J Med 2000, 343:938–952.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt S: Candidate autoantigens in multiple sclerosis. Mult Scler 1999, 5:147–160.PubMedGoogle Scholar
  3. 3.
    Huitinga I, van Rooijen N, de Groot CJ, et al.: Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 1990, 172:1025–1033.PubMedCrossRefGoogle Scholar
  4. 4.
    De Jager PL, Hafler DA: New therapeutic approaches for multiple sclerosis. Annu Rev Med 2007, 58:417–432.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuhlmann T, Lingfeld G, Bitsch A, et al.: Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002, 125:2202–2212.PubMedCrossRefGoogle Scholar
  6. 6.
    Herrero-Herranz E, Pardo LA, Gold R, Linker RA: Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neurobiol Dis 2008, 30:162–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al.: Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128:2705–2712.PubMedCrossRefGoogle Scholar
  8. 8.
    Ingle GT, Stevenson VL, Miller DH, et al.: Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 2003, 126:2528–2536.PubMedCrossRefGoogle Scholar
  9. 9.
    Trapp BD, Peterson J, Ransohoff RM, et al.: Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998, 338:278–285.PubMedCrossRefGoogle Scholar
  10. 10.
    Lovas G, Szilágyi N, Majtényi K, et al.: Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 2000, 123:308–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Lu ZH, Chakraborty G, Ledeen RW, et al.: N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. Brain Res Mol Brain Res 2004, 122:71–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Signoretti S, Marmarou A, Tavazzi B, et al.: N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following traumatic brain injury. J Neurotrauma 2001, 18:977–991.PubMedCrossRefGoogle Scholar
  13. 13.
    Benarroch EE: N-Acetylaspartate and N-acetylaspartylglutamate: neurobiology and clinical significance. Neurology 2008, 70:1353–1357.PubMedCrossRefGoogle Scholar
  14. 14.
    Fu L, Matthews PM, De Stefano N, et al.: Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 1998, 121:103–113.PubMedCrossRefGoogle Scholar
  15. 15.
    Khan O, Shen Y, Caon C, et al.: Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 2005, 11:646–651.PubMedCrossRefGoogle Scholar
  16. 16.
    Bjartmar C, Kidd G, Mork S, et al.: Neurological disability correlates with spinal cord axonal loss and reduced Nacetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000, 48:893–901.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu F, Selak M, O’Conner J, et al.: Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000, 177:95–103.PubMedCrossRefGoogle Scholar
  18. 18.
    Dutta R, McDonough J, Yin X, et al.: Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006, 59:478–489.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernardi P, Krauskopf A, Basso E, et al.: The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006, 273:2077–2099.PubMedCrossRefGoogle Scholar
  20. 20.
    Bogdan C: Nitric oxide and the immune response. Nat Immunol 2001, 2:907–916.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown GC, Borutaite V: Nitric oxide, mitochondria, and cell death. IUBMB Life 2001, 52:189–195.PubMedCrossRefGoogle Scholar
  22. 22.
    Cleeter MW, Cooper JM, Darley-Usmar VM, et al.: Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994, 345:50–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown GC, Borutaite V: Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 2002, 33:1440–1450.PubMedCrossRefGoogle Scholar
  24. 24.
    Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996, 271:C1424–C1437.PubMedGoogle Scholar
  25. 25.
    Pacher P, Beckman JS, Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007, 87:315–424.PubMedCrossRefGoogle Scholar
  26. 26.
    Cross A, Manning PT, Keeling RM, et al.: Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 1998, 88:45–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Groom AJ, Smith T, Turski L: Multiple sclerosis and glutamate. Ann N Y Acad Sci 2003, 993:229–275.PubMedCrossRefGoogle Scholar
  28. 28.
    Gunter TE, Yule DL, Gunter KK, et al.: Calcium and mitochondria. FEBS Lett 2004, 567:96–102.PubMedCrossRefGoogle Scholar
  29. 29.
    Srinivasan R, Sailasuta N, Hurd R, et al.: Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005, 128:1016–1025.PubMedCrossRefGoogle Scholar
  30. 30.
    Craner M, Newcombe J, Black JA, et al.: Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 2004, 101:8168–8173.PubMedCrossRefGoogle Scholar
  31. 31.
    Stys PK, Waxman SG, Ransom BR: Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 1992, 12:430–439.PubMedGoogle Scholar
  32. 32.
    Krieger C, Duchen MR: Mitochondria, Ca2+ and neurodegenerative disease. Eur J Pharmacol 2002, 447:177–188.PubMedCrossRefGoogle Scholar
  33. 33.
    Gunter TE, Sheu SS: Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. Biochim Biophys Acta 2009 Jan 6 (Epub ahead of print).Google Scholar
  34. 34.
    Griffiths EJ, Halestrap AP: Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 1993, 25:1461–1469.PubMedCrossRefGoogle Scholar
  35. 35.
    Friberg H, Ferrand-Drake M, Bengtsson F, et al.: Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 1998, 18:5151–5159.PubMedGoogle Scholar
  36. 36.
    Basso E, Fante L, Folkes J, et al.: Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005, 280:18558–18561.PubMedCrossRefGoogle Scholar
  37. 37.
    Baines CP, Kaiser RA, Purcell NH, et al.: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005, 434:658–662.PubMedCrossRefGoogle Scholar
  38. 38.
    Schinzel AC, Takeuchi O, Huang Z, et al.: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 2007, 102:12005–12010.CrossRefGoogle Scholar
  39. 39.
    Forte M, Gold BG, Marracci G, et al.: Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci U S A 2007, 104:7558–7563.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen H, Chan DC: Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol 2006, 18:453–459.PubMedCrossRefGoogle Scholar
  41. 41.
    Hollenbeck PJ, Saxton WM: The axonal transport of mitochondria. J Cell Sci 2005, 118:5411–5419.PubMedCrossRefGoogle Scholar
  42. 42.
    Saotome M, Safiulina D, Szabadkai G, et al.: Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 2008, 52:20728–20733.CrossRefGoogle Scholar
  43. 43.
    Wang X, Schwarz TL: The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 2009, 136:163–174.PubMedCrossRefGoogle Scholar
  44. 44.
    Macaskill AF, Rinholm JE, Twelvetrees AE, et al.: Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009, 61:541–555.PubMedCrossRefGoogle Scholar
  45. 45.
    Rintoul GL, Bennett VJ, Papaconstandinou NA, et al.: Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 2006, 97:800–806.PubMedCrossRefGoogle Scholar
  46. 46.
    Stagi M, Gorlovoy P, Larionov S, et al.: Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J 2006, 20:2573–2575.PubMedCrossRefGoogle Scholar
  47. 47.
    Morfini GA, You YM, Pollema SL, et al.: Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 2009, 12:864–871.PubMedCrossRefGoogle Scholar
  48. 48.
    Nikolaev A, McLaughlin T, O’Leary DD, et al.: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009, 457:981–989.PubMedCrossRefGoogle Scholar
  49. 49.
    Witt A, Brady ST: Unwrapping new layers of complexity in axon/glial relationships. Glia 2000, 29:112–117.PubMedCrossRefGoogle Scholar
  50. 50.
    Misgeld T, Kerschensteiner M, Bareyre FM, et al.: Imaging axonal transport of mitochondria in vivo. Nat Methods 2007, 4:559–561.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Kimmy G. Su
    • 1
  • Gary Banker
  • Dennis Bourdette
  • Michael Forte
  1. 1.Vollum InstituteOregon Health & Science UniversityPortlandUSA

Personalised recommendations