Current Neurology and Neuroscience Reports

, Volume 9, Issue 1, pp 83–89

Inclusion body myositis: Review of recent literature

Article

Abstract

Inclusion body myositis (IBM) is a progressive inflammatory skeletal muscle disease of unknown cause and without effective treatment. This article discusses existing literature, emphasizing disease mechanisms and models. In particular, it addresses limitations in the β-amyloid-mediated theory of IBM myofiber injury, flawed rationales of animal models of this disease, and recent reports regarding treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Chou SM: Myxovirus-like structures in a case of human chronic polymyositis. Science 1967, 158:1453–1455.PubMedCrossRefGoogle Scholar
  2. 2.
    Yunis EJ, Samaha FJ: Inclusion body myositis. Lab Invest 1971, 25:240–248.PubMedGoogle Scholar
  3. 3.
    Needham M, Mastaglia FL: Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 2007, 6:620–631.PubMedCrossRefGoogle Scholar
  4. 4.
    Needham M, James I, Corbett A, et al.: Sporadic inclusion body myositis: phenotypic variability and influence of HLADR3 in a cohort of 57 Australian cases. J Neurol Neurosurg Psychiatry 2008, 79:1056–1060.PubMedCrossRefGoogle Scholar
  5. 5.
    Amato AA, Gronseth GS, Jackson CE, et al.: Inclusion body myositis: clinical and pathological boundaries. Ann Neurol 1996, 40:581–586.PubMedCrossRefGoogle Scholar
  6. 6.
    Griggs RC, Askanas V, DiMauro S, et al.: Inclusion body myositis and myopathies. Ann Neurol 1995, 38:705–713.PubMedCrossRefGoogle Scholar
  7. 7.
    Badrising UA, Maat-Schieman M, van Duinen SG, et al.: Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 2000, 55:1385–1387.PubMedGoogle Scholar
  8. 8.
    Hoogendijk JE, Amato AA, Lecky BR, et al.: 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10–12 October 2003, Naarden, The Netherlands. Neuromuscul Disord 2004, 14:337–345.PubMedCrossRefGoogle Scholar
  9. 9.
    Chahin N, Engel AG: Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 2008, 70:418–424.PubMedCrossRefGoogle Scholar
  10. 10.
    Quartuccio L, De Marchi G, Scott CA, et al.: Treatment of inclusion body myositis with cyclosporin-A or tacrolimus: successful long-term management in patients with earlier active disease and concomitant autoimmune features. Clin Exp Rheumatol 2007, 25:246–251.PubMedGoogle Scholar
  11. 11.
    Felice KJ, Relva GM, Conway SR: Further observations on forearm flexor weakness in inclusion body myositis. Muscle Nerve 1998, 21:659–661.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson L, Edwards D, Walters S, et al.: The effectiveness of an individualized, home-based functional exercise program for patients with sporadic inclusion body myositis. J Clin Neuromuscul Dis 2007, 8:187–194.CrossRefGoogle Scholar
  13. 13.
    Dalakas MC: Interplay between inflammation and degeneration: Using inclusion body myositis to study “neuroinflammation.” Ann Neurol 2008, 64:1–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson FC, Ytterberg SR, St Sauver JL, Reed AM: Epidemiology of sporadic inclusion body myositis and polymyositis in Olmsted County, Minnesota. J Rheumatol 2008, 35:445–447.PubMedGoogle Scholar
  15. 15.
    Hatanaka Y, Oh SJ: Single-fiber electromyography in sporadic inclusion body myopathy. Clin Neurophysiol 2007, 118:1563–1568.PubMedCrossRefGoogle Scholar
  16. 16.
    Barkhaus PE, Nandedkar SD: Serial quantitative electrophysiologic studies in sporadic inclusion body myositis. Electromyogr Clin Neurophysiol 2007, 47:97–104.PubMedGoogle Scholar
  17. 17.
    Badrising UA, Verschuuren JJ, Wintzen AR, van Dijk JG: Synaptic dysfunction does not contribute to muscle weakness in inclusion-body myositis. Muscle Nerve 2007, 35:266–267.PubMedCrossRefGoogle Scholar
  18. 18.
    Jackson CE, Barohn RJ, Gronseth G, et al.: Inclusion body myositis functional rating scale: a reliable and valid measure of disease severity. Muscle Nerve 2008, 37:473–476.PubMedCrossRefGoogle Scholar
  19. 19.
    Needham M, Hooper A, James I, et al.: Apolipoprotein epsilon alleles in sporadic inclusion body myositis: a reappraisal. Neuromuscul Disord 2008, 18:150–152.PubMedCrossRefGoogle Scholar
  20. 20.
    Greenberg SA: Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology 2007, 69:2008–2019.PubMedCrossRefGoogle Scholar
  21. 21.
    Needham M, Mastaglia FL: Sporadic inclusion body myositis: a continuing puzzle. Neuromuscul Disord 2008, 18:6–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Askanas V, Engel WK: Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 2007, 19:550–559.PubMedCrossRefGoogle Scholar
  23. 23.
    Greenberg SA: A gene expression approach to study perturbed pathways in myositis. Curr Opin Rheumatol 2007, 19:536–541.PubMedCrossRefGoogle Scholar
  24. 24.
    Askanas V, Engel WK: Inclusion-body myositis: a myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology 2006, 66:S39–S48.PubMedCrossRefGoogle Scholar
  25. 25.
    Sarkozi E, Askanas V, Johnson SA, et al.: Beta-amyloid precursor protein mRNA is increased in inclusion-body myositis muscle. Neuroreport 1993, 4:815–818.PubMedCrossRefGoogle Scholar
  26. 26.
    Askanas V, Sarkozi E, Bilak M, et al.: Human muscle macrophages express beta-amyloid precursor and prion proteins and their mRNAs. Neuroreport 1995, 6:1045–1049.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkozi E, Askanas V, Johnson SA, et al.: Expression of beta-amyloid precursor protein gene is developmentally regulated in human muscle fibers in vivo and in vitro. Exp Neurol 1994, 128:27–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Greenberg SA, Sanoudou D, Haslett JN, et al.: Molecular profiles of inflammatory myopathies. Neurology 2002, 59:1170–1182.PubMedGoogle Scholar
  29. 29.
    Schmidt J, Barthel K, Wrede A, et al.: Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 2008, 131:1228–1240.PubMedCrossRefGoogle Scholar
  30. 30.
    Askanas V, Alvarez RB, Engel WK: Beta-amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann Neurol 1993, 34:551–560.PubMedCrossRefGoogle Scholar
  31. 31.
    Choi YC, Park GT, Kim TS, et al.: Sporadic inclusion body myositis correlates with increased expression and crosslinking by transglutaminases 1 and 2. J Biol Chem 2000, 275:8703–8710.PubMedCrossRefGoogle Scholar
  32. 32.
    Haass C, Schlossmacher MG, Hung AY, et al.: Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992, 359:322–325.PubMedCrossRefGoogle Scholar
  33. 33.
    Howland DS, Trusko SP, Savage MJ, et al.: Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J Biol Chem 1998, 273:16576–16582.PubMedCrossRefGoogle Scholar
  34. 34.
    Leclerc A, Tome FM, Fardeau M: Ubiquitin and betaamyloid-protein in inclusion body myositis (IBM), familial IBM-like disorder and oculopharyngeal muscular dystrophy: an immunocytochemical study. Neuromuscul Disord 1993, 3:283–291.PubMedCrossRefGoogle Scholar
  35. 35.
    Sherriff FE, Joachim CL, Squier MV, Esiri MM: Ubiquitinated inclusions in inclusion-body myositis patients are immunoreactive for cathepsin D but not beta-amyloid. Neurosci Lett 1995, 194:37–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Nalbantoglu J, Karpati G, Carpenter S: Conspicuous accumulation of a single-stranded DNA binding protein in skeletal muscle fibers in inclusion body myositis. Am J Pathol 1994, 144:874–882.PubMedGoogle Scholar
  37. 37.
    Lunemann JD, Schmidt J, Schmid D, et al.: Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol 2007, 61:476–483.PubMedCrossRefGoogle Scholar
  38. 38.
    Chou SM: Myxovirus-like structures and accompanying nuclear changes in chronic polymyositis. Arch Pathol 1968, 86:649–658.PubMedGoogle Scholar
  39. 39.
    Greenberg SA, Pinkus JL, Amato AA: Nuclear membrane proteins are present within rimmed vacuoles in inclusionbody myositis. Muscle Nerve 2006, 34:406–416.PubMedCrossRefGoogle Scholar
  40. 40.
    Greenberg SA, Watts GD, Kimonis VE, et al.: Nuclear localization of valosin-containing protein in normal muscle and muscle affected by inclusion-body myositis. Muscle Nerve 2007, 36:447–454.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakano S, Shinde A, Fujita K, et al.: Histone H1 is released from myonuclei and present in rimmed vacuoles with DNA in inclusion body myositis. Neuromuscul Disord 2008, 18:27–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Greenberg SA, Bradshaw EM, Pinkus JL, et al.: Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 2005, 65:1782–1787.PubMedCrossRefGoogle Scholar
  43. 43.
    Bradshaw EM, Orihuela A, McArdel SL, et al.: A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 2007, 178:547–556.PubMedGoogle Scholar
  44. 44.
    Greenberg SA, Pinkus GS, Amato AA, Pinkus JL: Myeloid dendritic cells in inclusion-body myositis and myositis and polymyositis. Muscle Nerve 2007, 35:17–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Salajegheh M, Rakocevic G, Raju R, et al.: T cell receptor profiling in muscle and blood lymphocytes in sporadic inclusion body myositis. Neurology 2007, 69:1672–1679.PubMedCrossRefGoogle Scholar
  46. 46.
    De Paepe B, Creus KK, De Bleecker JL: Chemokine profile of different inflammatory myopathies reflects humoral versus cytotoxic immune responses. Ann N Y Acad Sci 2007, 1109:441–453.PubMedCrossRefGoogle Scholar
  47. 47.
    Salajegheh M, Raju R, Schmidt J, Dalakas MC: Upregulation of thrombospondin-1 (TSP-1) and its binding partners, CD36 and CD47, in sporadic inclusion body myositis. J Neuroimmunol 2007, 187:166–174.PubMedCrossRefGoogle Scholar
  48. 48.
    Walsh RJ, Kong SW, Yao Y, et al.: Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum 2007, 56:3784–3792.PubMedCrossRefGoogle Scholar
  49. 49.
    Dalakas MC: Molecular immunology and genetics of inflammatory muscle diseases. Arch Neurol 1998, 55:1509–1512.PubMedCrossRefGoogle Scholar
  50. 50.
    Greenberg SA: Comment on ‘Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle.’ Brain 2008 Jul 24 (Epub ahead of print).Google Scholar
  51. 51.
    Hutchinson DO, Jongbloed B: Two-dimensional gel electrophoresis in inclusion body myositis. J Clin Neurosci 2008, 15:440–444.PubMedCrossRefGoogle Scholar
  52. 52.
    Kannanayakal TJ, Mendell JR, Kuret J: Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis. Neurosci Lett 2008, 431:141–145.PubMedCrossRefGoogle Scholar
  53. 53.
    Macaione V, Aguennouz M, Mazzeo A, et al.: Expression of transglutaminase 2 does not differentiate focal myositis from generalized inflammatory myopathies. Acta Neurol Scand 2008, 117:393–398.PubMedCrossRefGoogle Scholar
  54. 54.
    Choi YC, Kim TS, Kim SY: Increase in transglutaminase 2 in idiopathic inflammatory myopathies. Eur Neurol 2004, 51:10–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Wojcik S, Engel WK, Yan R, et al.: NOGO is increased and binds to BACE1 in sporadic inclusion-body myositis and in A beta PP-overexpressing cultured human muscle fibers. Acta Neuropathol 2007, 114:517–526.PubMedCrossRefGoogle Scholar
  56. 56.
    Terracciano C, Nogalska A, Engel WK, et al.: In inclusion-body myositis muscle fibers Parkinson-associated DJ-1 is increased and oxidized. Free Radic Biol Med 2008, 45:773–779.PubMedCrossRefGoogle Scholar
  57. 57.
    Fukuchi K, Pham D, Hart M, et al.: Amyloid-beta deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Am J Pathol 1998, 153:1687–1693.PubMedGoogle Scholar
  58. 58.
    Jin LW, Hearn MG, Ogburn CE, et al.: Transgenic mice over-expressing the C-99 fragment of betaPP with an alpha-secretase site mutation develop a myopathy similar to human inclusion body myositis. Am J Pathol 1998, 153:1679–1686.PubMedGoogle Scholar
  59. 59.
    Kitazawa M, Green KN, Caccamo A, LaFerla FM: Genetically augmenting Abeta42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. Am J Pathol 2006, 168:1986–1997.PubMedCrossRefGoogle Scholar
  60. 60.
    Moussa CE, Fu Q, Kumar P, et al.: Transgenic expression of beta-APP in fast-twitch skeletal muscle leads to calcium dyshomeostasis and IBM-like pathology. FASEB J 2006, 20:2165–2167.PubMedCrossRefGoogle Scholar
  61. 61.
    Strazielle C, Dumont M, Fukuchi K, Lalonde R: Transgenic mice expressing the human C99 terminal fragment of betaAPP: effects on cytochrome oxidase activity in skeletal muscle and brain. J Chem Neuroanat 2004, 27:237–246.PubMedCrossRefGoogle Scholar
  62. 62.
    Sugarman MC, Kitazawa M, Baker M, et al.: Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiol Aging 2006, 27:423–432.PubMedCrossRefGoogle Scholar
  63. 63.
    Sugarman MC, Yamasaki TR, Oddo S, et al.: Inclusion body myositis-like phenotype induced by transgenic overexpression of beta APP in skeletal muscle. Proc Natl Acad Sci U S A 2002, 99:6334–6339.PubMedCrossRefGoogle Scholar
  64. 64.
    Capsoni S, Ruberti F, Di Daniel E, Cattaneo A: Muscular dystrophy in adult and aged anti-NGF transgenic mice resembles an inclusion body myopathy. J Neurosci Res 2000, 59:553–560.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen X, Ghribi O, Geiger JD: Rabbits fed cholesterolenriched diets exhibit pathological features of inclusion body myositis. Am J Physiol Regul Integr Comp Physiol 2008, 294:R829–R835.PubMedGoogle Scholar
  66. 66.
    Delaunay A, Bromberg KD, Hayashi Y, et al.: The ER-bound RING finger protein 5 (RNF5/RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS ONE 2008, 3:e1609.PubMedCrossRefGoogle Scholar
  67. 67.
    Kitazawa M, Trinh DN, Laferla FM: Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol 2008, 64:15–24.PubMedCrossRefGoogle Scholar
  68. 68.
    University of California: Lithium chloride slows onset of skeletal muscle disorder [press release]. Available at http://www.universityofcalifornia.edu/news/article/17499. Accessed November 14, 2008.

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  1. 1.Department of NeurologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations