Current Neurology and Neuroscience Reports

, Volume 7, Issue 4, pp 348–354 | Cite as

The neurobiology of epilepsy



Epilepsy is a complex disease with diverse clinical characteristics that preclude a singular mechanism. One way to gain insight into potential mechanisms is to reduce the features of epilepsy to its basic components: seizures, epileptogenesis, and the state of recurrent unprovoked seizures that defines epilepsy itself. A common way to explain seizures in a normal individual is that a disruption has occurred in the normal balance of excitation and inhibition. The fact that multiple mechanisms exist is not surprising given the varied ways the normal nervous system controls this balance. In contrast, understanding seizures in the brain of an individual with epilepsy is more difficult because seizures are typically superimposed on an altered nervous system. The different environment includes diverse changes, making mechanistic predictions a challenge. Understanding the mechanisms of seizures in an individual with epilepsy is also more complex than understanding the mechanisms of seizures in a normal individual because epilepsy is not necessarily a static condition but can continue to evolve over the lifespan. Using temporal lobe epilepsy as an example, it is clear that genes, developmental mechanisms, and neuronal plasticity play major roles in creating a state of underlying hyperexcitability. However, the critical control points for the emergence of chronic seizures in temporal lobe epilepsy, as well as their persistence, frequency, and severity, are questions that remain unresolved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Bouchet C, Cazauvieilh M: De L’epilpsie consideree dans ses raports avec l’alienation mentale. Recherche sur la nature et le siege de ces deux m aladies. Arch Gen Med 1925, 9:510–542.Google Scholar
  2. 2.
    Sommer W: Erkrankung des Ammonshornes als aetiologisches Moment der Epilepsie. Arch Psychiat Nervendrankh 1880, 10:631–675.CrossRefGoogle Scholar
  3. 3.
    Scharfman HE, Pedley TA: Temporal lobe epilepsy. In The Neurobiology of Disease. Edited by Gilman A. New York: Academic Press; 2006.Google Scholar
  4. 4.
    Jackson JH: On a particular variety of epilepsy (“intellectual aura”), one case with symptoms of organic brain disease. Brain 1988, 11:179–207.CrossRefGoogle Scholar
  5. 5.
    Jackson JH: Epileptic attacks in a patient who had symptoms pointing to gross organic disease of the right temporo-sphenoidal lobe. Brain 1899, 22:534–549.CrossRefGoogle Scholar
  6. 6.
    Gibbs FA, Gibbs EL, Lennox WG: Epilepsy: a paroxysmal cerebral dysrhythmia. Brain 1937, 60:377–388.CrossRefGoogle Scholar
  7. 7.
    Jasper HH, Pertuiset B, Flanigin H: EEG and cortical electrograms in patients with temporal lobe seizures. Arch Neurol Psychiatry 1951, 65:272–290.Google Scholar
  8. 8.
    Penfield W, Jasper H: Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown & Co.; 1954.Google Scholar
  9. 9.
    Hodgkin AL, Huxley AF: Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 1952, 140:177–183.PubMedCrossRefGoogle Scholar
  10. 10.
    Hille B: Ion Channels of Excitable Membranes. New York: Sinauer; 2001.Google Scholar
  11. 11.
    McCormick DA, Huguenard JR: Electrophysiology of the Neuron: An Interactive Tutorial. Oxford: Oxford University Press; 1994.Google Scholar
  12. 12.
    Somjen GG: Ion regulation in the brain: implications for pathophysiology. Neuroscientist 2002, 8:254–267.PubMedGoogle Scholar
  13. 13.
    Vaillend C, Mason SE, Cuttle MF, Alger BE: Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 2002, 88:2963–2978.PubMedCrossRefGoogle Scholar
  14. 14.
    Grisar T, Guillaume D, Delgado-Escueta AV: Contribution of Na+,K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res 1992, 12:141–149.PubMedCrossRefGoogle Scholar
  15. 15.
    Haglund MM, Stahl WL, Kunkel DD, Schwartzkroin PA: Developmental and regional differences in the localization of Na,K-ATPase activity in the rabbit hippocampus. Brain Res 1985, 343:198–203.PubMedCrossRefGoogle Scholar
  16. 16.
    Fukuda A, Prince DA: Postnatal development of electrogenic sodium pump activity in rat hippocampal pyramidal neurons. Brain Res 1992, 65:101–114.CrossRefGoogle Scholar
  17. 17.
    Fellin T, Haydon PG: Do astrocytes contribute to excitation underlying seizures? Trends Mol Med 2005, 11:530–533.PubMedCrossRefGoogle Scholar
  18. 18.
    Duffy S, MacVicar BA: Modulation of neuronal excitability by astrocytes. Adv Neurol 1999, 79:573–581.PubMedGoogle Scholar
  19. 19.
    Meisler MH, Kearney J, Ottman R, Escayg A: Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001, 35:567–588.PubMedCrossRefGoogle Scholar
  20. 20.
    Dzhala VI, Talos DM, Sdrulla DA, et al.: NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005, 11:1205–1213.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumoto R, Ajmone-Marsan C: Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 1964, 80:305–326.CrossRefGoogle Scholar
  22. 22.
    Brown TH, Johnston D: The synaptic nature of the paroxysmal depolarization shift in hippocampal neurons. Ann Neurol 1984, 16:S65–S71.PubMedCrossRefGoogle Scholar
  23. 23.
    Traub RD, Michelson-Law H, Bibbig AE, et al.: Gap junctions, fast oscillations and the initiation of seizures. Adv Exp Med Biol 2004, 548:110–122.PubMedGoogle Scholar
  24. 24.
    Cobb SR, Buhl EH, Halasy K, et al.: Paulsen O, Somogyi P: Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1996, 378:75–78.CrossRefGoogle Scholar
  25. 25.
    Sloviter RS, Zappone CA, Harvey BD, Frotscher M: Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol 2006, 494:944–960.PubMedCrossRefGoogle Scholar
  26. 26.
    Nadler JV: The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 2003, 28:1649–1658.PubMedCrossRefGoogle Scholar
  27. 27.
    Sutula TP, Dudek FE: Unm asking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. In The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Edited by Scharfman HE. Amsterdam: Elsevier; 2007.Google Scholar
  28. 28.
    Lewis DV: Losing neurons: selective vulnerability and mesial temporal sclerosis. Epilepsia 2005, 46(Suppl 7):39–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Ottman R: Analysis of genetically complex epilepsies. Epilepsia 2005, 46(Suppl 10):7–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Lehericy S, Dormont D, Semah F, et al.: Developmental abnormalities of the medial temporal lobe in patients with temporal lobe epilepsy. Am J Neuroradiol 1995, 16:617–626.PubMedGoogle Scholar
  31. 31.
    Baulac M, DeGrissac M, Hasboun D, et al.: Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 1998, 44:223–233.PubMedCrossRefGoogle Scholar
  32. 32.
    Ho SS, Kuzniecky RI, Gilliam F, et al.: Temporal lobe developmental malform ations and epilepsy: dual pathology and bilateral hippocampal abnormalities. Neurology 1998, 50:748–754.PubMedGoogle Scholar
  33. 33.
    Meldrum BS: Epileptic brain damage: a consequence and a cause of seizures. Neuropathol Appl Neurobiol 1997, 23:185–201.PubMedCrossRefGoogle Scholar
  34. 34.
    Walker MC, White HS, Sander JW: Disease modification in partial epilepsy. Brain 2002, 125:1937–1950.PubMedCrossRefGoogle Scholar
  35. 35.
    Riban V, Bouilleret V, Pham-Le BT, et al.: Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 2002, 112:101–111.PubMedCrossRefGoogle Scholar
  36. 36.
    Scharfman HE, Sollas AL, Smith KL, et al.: Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 2002, 454:424–439.PubMedCrossRefGoogle Scholar
  37. 37.
    Bender RA, Dube C, Baram TZ: Febrile seizures and mechanisms of epileptogenesis: insights from an animal model. Adv Exp Med Biol 2004, 548:213–215.PubMedGoogle Scholar
  38. 38.
    Pitkanen A, McIntosh TK: Animal models of post-traum atic epilepsy. J Neurotrauma 2006, 23:241–261.PubMedCrossRefGoogle Scholar
  39. 39.
    Dube C, Vezzani A, Behrens M, et al.: Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 2005, 57:152–155.PubMedCrossRefGoogle Scholar
  40. 40.
    Lukasiuk K, Pitkanen A: Large-scale analysis of gene expression in epilepsy research: is synthesis already possible? Neurochem Res 2004, 29:1169–1178.PubMedCrossRefGoogle Scholar
  41. 41.
    Scharfman HE: Seizure-induced neurogenesis and its dependence on growth factors and cytokines. In Growth Factors and Epilepsy. Edited by Binder DK, Scharfman HE. Hauppague: Nova Sciences; 2005.Google Scholar
  42. 42.
    Guerrini R, Genton P: Epileptic syndromes and visually induced seizures. Epilepsia 2004, 45(Suppl 1):14–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Bazil CW: Sleep disturbances in epilepsy patients. Curr Neurol Neurosci Rep 2005, 5:297–298.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.Nathan Kline Institute for Psychiatric ResearchOrangetownUSA

Personalised recommendations