Current Neurology and Neuroscience Reports

, Volume 7, Issue 4, pp 278–289 | Cite as

Limbic, associative, and motor territories within the targets for deep brain stimulation: Potential clinical implications

  • Atchar Sudhyadhom
  • Frank J. Bova
  • Kelly D. Foote
  • Christian A. Rosado
  • Lindsey Kirsch-Darrow
  • Michael S. OkunEmail author


The use of deep brain stimulation (DBS) has recently been expanding for the treatment of many neurologic disorders such as Parkinson disease, dystonia, essential tremor, Tourette’s syndrome, cluster headache, epilepsy, depression, and obsessive compulsive disorder. The target structures for DBS include specific segregated territories within limbic, associative, or motor regions of very small subnuclei. In this review, we summarize current clinical techniques for DBS, the cognitive/mood/motor outcomes, and the relevant neuroanatomy with respect to functional territories within specific brain targets. Future development of new techniques and technology that may include a more direct visualization of “motor” territories within target structures may prove useful for avoiding side effects that may result from stimulation of associative and limbic regions. Alternatively, newer procedures may choose and specifically target non-motor territories for chronic electrical stimulation.


Cluster Headache Essential Tremor Subthalamic Nucleus Zona Incerta Pallidal Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Benabid AL, Pollak P, Hommel M, et al.: Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus. Rev Neurol (Paris) 1989, 145:320–323.Google Scholar
  2. 2.
    Okun MS, Vitek JL: Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov Disord 2004, 19:375–389.PubMedGoogle Scholar
  3. 3.
    Limousin P, Krack P, Pollak P, et al.: Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998, 339:1105–1111.PubMedGoogle Scholar
  4. 4.
    Franzini A, Ferroli P, Leone M, Broggi G: Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 2003, 52:1095–1099; discussion 1099–1101.PubMedGoogle Scholar
  5. 5.
    Nuttin B, Gybels J, Cosyns P, et al.: Deep brain stimulation for psychiatric disorders. Neurosurg Clin North Am 2003, 14:xv–xvi.Google Scholar
  6. 6.
    Okun MS, Bowers D, Springer U, et al.: What’s in a “smile?” Intra-operative observations of contralateral smiles induced by deep brain stimulation. Neurocase 2004, 10:271–279.PubMedGoogle Scholar
  7. 7.
    McIntyre CC, Grill WM, Sherman DL, Thakor NV: Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 2004, 91:1457–1469.PubMedGoogle Scholar
  8. 8.
    Okun MS, Tagliati M, Pourfar M, et al.: Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 2005, 62:1250–1255.PubMedGoogle Scholar
  9. 9.
    Volkmann J, Herzog J, Kopper F, Deuschl G: Introduction to the programming of deep brain stimulators. Mov Disord 2002, 17(Suppl 3):S181–187.PubMedGoogle Scholar
  10. 10.
    Starr PA, Christine CW, Theodosopoulos PV, et al.: Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002, 97:370–387.PubMedGoogle Scholar
  11. 11.
    McClelland S 3rd, Ford B, Senatus PB, et al.: Subthalamic stimulation for Parkins on disease: determination of electrode location necessary for clinical efficacy. Neurosurg Focus 2005, 19:E12.PubMedGoogle Scholar
  12. 12.
    Kumar R: Methods for programming and patient management with deep brain stimulation of the globuspallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord 2002, 17(Suppl 3):S198–207.PubMedGoogle Scholar
  13. 13.
    McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 2004, 115:1239–1248.PubMedGoogle Scholar
  14. 14.
    Filali M, Hutchison WD, Palter VN, et al.: Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 2004, 156:274–281.PubMedGoogle Scholar
  15. 15.
    Grill WM, Snyder AN, Miocinovic S: Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 2004, 15:1137–1140.PubMedGoogle Scholar
  16. 16.
    Dostrovsky JO, Levy R, Wu JP, et al.: Microstimulation-induced inhibition of neuronal firing in humanglobus pallidus. J Neurophysiol 2000, 84:570–574.PubMedGoogle Scholar
  17. 17.
    Hashimoto T, Elder CM, Okun MS, et al.: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003, 23:1916–1923.PubMedGoogle Scholar
  18. 18.
    Beurrier C, Bioulac B, Audin J, Hammond C: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 2001, 85:1351–1356.PubMedGoogle Scholar
  19. 19.
    Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986, 9:357–381.PubMedGoogle Scholar
  20. 20.
    Albin RL, Young AB, Penney JB: The functional anatomy of basal ganglia disorders. Trends Neurosci 1989, 12:366–375.PubMedGoogle Scholar
  21. 21.
    Mink JW: The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996, 50:381–425.PubMedGoogle Scholar
  22. 22.
    Mink JW: The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003, 60:1365–1368.PubMedGoogle Scholar
  23. 23.
    Brown P: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003, 18:357–363.PubMedGoogle Scholar
  24. 24.
    Karachi C, Francois C, Parain K, et al.: Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 2002, 450:122–134.PubMedGoogle Scholar
  25. 25.
    Karachi C, Yelnik J, Tande D, et al.: The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Mov Disord 2005, 20:172–180.PubMedGoogle Scholar
  26. 26.
    Francois C, Yelnik J, Percheron G, Tande D: Calbindin D-28k as a marker for the associative cortical territory of the striatum in macaque. Brain Res 1994, 633:331–336.PubMedGoogle Scholar
  27. 27.
    Lehericy S, Bardinet E, Tremblay L, et al.: Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 2006, 16:149–161.PubMedGoogle Scholar
  28. 28.
    Lehericy S, Ducros M, Van de Moortele PF, et al.: Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 2004, 55:522–529.PubMedGoogle Scholar
  29. 29.
    Wiegell MR, Tuch DS, Larsson HB, Wedeen VJ: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage 2003, 19:391–401.PubMedGoogle Scholar
  30. 30.
    Butson CR, McIntyre CC: Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng 2006, 3:1–8.PubMedGoogle Scholar
  31. 31.
    Alexander GE, Crutcher MD, DeLong MR: Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990, 85:119–146.PubMedCrossRefGoogle Scholar
  32. 32.
    Parent A, Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995, 20:91–127.PubMedGoogle Scholar
  33. 33.
    Parent A, De Bellefeuille L: Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 1982, 245:201–213.PubMedGoogle Scholar
  34. 34.
    DeVito JL, Anderson ME: An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 1982, 46:107–117.PubMedGoogle Scholar
  35. 35.
    Barbas H, Henion TH, Dermon CR: Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 1991, 313:65–94.PubMedGoogle Scholar
  36. 36.
    Francois C, Percheron G, Yelnik J, Tande D: A topographic study of the course of nigral axons and of the distribution of pallidal axonal endings in the centre median-parafascicular complex of macaques. Brain Res 1988, 473:181–186.PubMedGoogle Scholar
  37. 37.
    Hirai T, Jones EG: A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 1989, 14:1–34.PubMedGoogle Scholar
  38. 38.
    Pahwa R, Lyons KE, Wilkinson SB, et al.: Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001, 16:140–143.PubMedGoogle Scholar
  39. 39.
    Schuurman PR, Bosch DA, Bossuyt PM, et al.: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 2000, 342:461–468.PubMedGoogle Scholar
  40. 40.
    Visser-Vandewalle V, Temel Y, Boon P, et al.: Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome. Report of three cases. J Neurosurg 2003, 99:1094–1100.PubMedGoogle Scholar
  41. 41.
    Yelnik J: Functional anatomy of the basal ganglia. Mov Disord 2002, 17(Suppl. 3):S15–21.PubMedGoogle Scholar
  42. 42.
    Middleton FA, Strick PL: Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 2000, 31:236–250.PubMedGoogle Scholar
  43. 43.
    Kelly RM, Strick PL: Mocro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 2004, 143:449–459.PubMedGoogle Scholar
  44. 43.
    Carpenter MB, Carleton SC, Keller JT, Conte P: Connections of the subthalamic nucleus in the monkey. Brain Res 1981, 224:1–29.PubMedGoogle Scholar
  45. 45.
    Nakano K, Hasegawa Y, Tokushige A, et al.: Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 1990, 537:54–68.PubMedGoogle Scholar
  46. 46.
    Nauta HJ, Cole M: Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 1978, 180:1–16.PubMedGoogle Scholar
  47. 47.
    Lozano AM: Vim thalamic stimulation for tremor. Arch Med Res 2000, 31:266–269.PubMedGoogle Scholar
  48. 48.
    Volkmann J, Benecke R: Deep brain stimulation for dystonia: patient selection and evaluation. Mov Disord 2002, 17(Suppl 3):S112–115.PubMedGoogle Scholar
  49. 49.
    Starr PA, Turner RS, Rau G, et al.: Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 2004, 17:E4.PubMedGoogle Scholar
  50. 50.
    Greene P: Deep-brain stimulation for generalized dystonia. N Engl J Med 2005, 352:498–500.PubMedGoogle Scholar
  51. 51.
    Vidailhet M, Vercueil L, Houeto JL, et al.: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005, 352:459–467.PubMedGoogle Scholar
  52. 52.
    Leone M, Franzini A, Broggi G, et al.: Long-term follow-up of bilateral hypothalamic stimulation for intractable cluster headache. Brain 2004, 127:2259–2264.PubMedGoogle Scholar
  53. 53.
    Leone M, Franzini A, D’Andrea G, et al.: Deep brain stimulation to relieve drug-resistant SUNCT. Ann Neurol 2005, 57:924–927.PubMedGoogle Scholar
  54. 54.
    Bittar RG, Kar-Purkayastha I, Owen SL, et al.: Deep brain stimulation for pain relief: A meta-analysis. J Clin Neurosci 2005, 12:515–519.PubMedGoogle Scholar
  55. 55.
    Temel Y, Visser-Vandewalle V: Surgery in Tourette syndrome. Mov Disord 2004, 19:3–14.PubMedGoogle Scholar
  56. 56.
    Houeto JL, Karachi C, Mallet L, et al.: Tourette’s syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry 2005, 76:992–995.PubMedGoogle Scholar
  57. 57.
    Lanotte MM, Rizzone M, Bergamasco B, et al.: Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 2002, 72:53–58.PubMedGoogle Scholar
  58. 58.
    Nowinski WL, Belov D, Pollak P, Benabid AL: Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 2005, 57:3190–330; discussion 319–330.Google Scholar
  59. 59.
    Saint-Cyr JA, Hoque T, Pereira LC, et al.: Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 2002, 97:1152–1166.PubMedGoogle Scholar
  60. 60.
    Hamel W, Fietzek U, Morsnowski A, et al.: Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 2003, 74:1036–1046.PubMedGoogle Scholar
  61. 61.
    Starr PA, Vitek JL, DeLong M, Bakay RA: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 1999, 44:303–313; discussion 313–324.PubMedGoogle Scholar
  62. 62.
    Hutchison WD, Allan RJ, Opitz H, et al.: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 1998, 44:622–628.PubMedGoogle Scholar
  63. 63.
    Yelnik J, Damier P, Demeret S, et al.: Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method. J Neurosurg 2003, 99:89–99.PubMedGoogle Scholar
  64. 64.
    McIntyre CC, Mori S, Sherman DL, et al.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004, 115:589–595.PubMedGoogle Scholar
  65. 65.
    Durif F, Lemaire JJ, Debilly B, Dordain G: Acute and chronic effects of anteromedial globus pallidus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999, 67:315–322.PubMedGoogle Scholar
  66. 66.
    Schrader B, Hamel W, Weinert D, Mehdorn HM: Documentation of electrode localization. Mov Disord 2002, 17(Suppl 3):S167–174.PubMedGoogle Scholar
  67. 67.
    Gross RE, Lombardi WJ, Lang AE, et al.: Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease. Brain 1999, 122(Pt 3):405–416.PubMedGoogle Scholar
  68. 68.
    Papavassiliou E, Rau G, Heath S, et al.: Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery 2004, 54:1120–1129; discussion 1129–1130.PubMedGoogle Scholar
  69. 69.
    Benabid AL, Pollak P, Gervason C, et al.: Long-term suppression of trem or by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991, 337:403–406.PubMedGoogle Scholar
  70. 70.
    Koller W, Pahwa R, Busenbark K, et al.: High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997, 42:292–299.PubMedGoogle Scholar
  71. 71.
    Ondo W, Jankovic J, Schwartz K, et al.: Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 1998, 51:1063–1069.PubMedGoogle Scholar
  72. 72.
    Weaver F, Follett K, Hur K, et al.: Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes. J Neurosurg 2005, 103:956–967.PubMedGoogle Scholar
  73. 73.
    Rodriguez-Oroz MC, Obeso JA, Lang AE, et al.: Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 2005, 128:2240–2249.PubMedGoogle Scholar
  74. 74.
    Gross C, Rougier A, Guehl D, et al.: High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. J Neurosurg 1997, 87:491–498.PubMedCrossRefGoogle Scholar
  75. 75.
    Ghika J, Villemure JG, Fankhauser H, et al.: Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. J Neurosurg 1998, 89:713–718.PubMedGoogle Scholar
  76. 76.
    Krack P, Pollak P, Limousin P, et al.: Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 1998, 121(Pt 3):451–457.PubMedGoogle Scholar
  77. 77.
    Brown RG, Dowsey PL, Brown P, et al.: Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 1999, 45:473–488.PubMedGoogle Scholar
  78. 78.
    Pillon B, Ardouin C, Damier P, et al.: Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 2000, 55:4110–4118.Google Scholar
  79. 79.
    Volkmann J, Allert N, Voges J, et al.: Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 2001, 56:548–551.PubMedGoogle Scholar
  80. 80.
    Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001, 345:956–963.Google Scholar
  81. 81.
    Anderson VC, Burchiel KJ, Hogarth P, et al.: Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005, 62:554–560.PubMedGoogle Scholar
  82. 82.
    Thobois S, Mertens P, Guenot M, et al.: Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 2002, 249:529–534.PubMedGoogle Scholar
  83. 83.
    Kleiner-Fisman G, Fisman DN, Sime E, et al.: Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 2003, 99:489–495.PubMedGoogle Scholar
  84. 84.
    Okun MS, Green J, Saben R, et al.: Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J Neurol Neurosurg Psychiatry 2003, 74:1584–1586.PubMedGoogle Scholar
  85. 85.
    Bejjani BP, Damier P, Arnulf I, et al.: Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 1999, 340:1476–1480.PubMedGoogle Scholar
  86. 86.
    Okun MS, Raju DV, Walter BL, et al.: Pseudobulbar crying induced by stimulation in the region of the subthalamic nucleus. J Neurol Neurosurg Psychiatry 2004, 75:921–923.PubMedGoogle Scholar
  87. 87.
    Dujardin K, Defebvre L, Krystkowiak P, et al.: Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 2001, 248:603–611.PubMedGoogle Scholar
  88. 88.
    Saint-Cyr JA, Trepanier LL, Kumar R, et al.: Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 2000, 123(Pt 10):2091–2108.PubMedGoogle Scholar
  89. 89.
    Romito LM, Scerrati M, Contarino MF, et al.: Long-term follow up of subthalamic nucleus stimulation in Parkinson’s disease. Neurology 2002, 58:1546–1550.PubMedGoogle Scholar
  90. 90.
    Krack P, Kumar R, Ardouin C, et al.: Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 2001, 16:867–875.PubMedGoogle Scholar
  91. 91.
    Kalteis K, Standhardt H, Kryspin-Exner I, et al.: Influence of bilateral Stn-stimulation on psychiatric symptoms and psychosocial functioning in patients with Parkinson’s disease. J Neural Transm 2006, 113:1191–1206.PubMedGoogle Scholar
  92. 92.
    Alegret M, Junque C, Valldeoriola F, et al.: Effects of bilateral subthalamic stimulation on cognitive function in Parkins on disease. Arch Neurol 2001, 58:1223–1227.PubMedGoogle Scholar
  93. 93.
    De Gaspari D, Siri C, Di Gioia M, et al.: Clinical correlates and cognitive underpinnings of verbal fluency impairment after chronic subthalamic stimulation in Parkinson’s disease. Parkinsonism Relat Disord 2006, 12:289–295.PubMedGoogle Scholar
  94. 94.
    Trepanier LL, Kumar R, Lozano AM, et al.: Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn 2000, 42:324–347.PubMedGoogle Scholar
  95. 95.
    Dujardin K, Krystkowiak P, Defebvre L, et al.: A case of severe dysexecutive syndrome consecutive to chronic bilateral pallidal stimulation. Neuropsychologia 2000, 38:1305–1315.PubMedGoogle Scholar
  96. 96.
    Miyawaki E, Perlmutter JS, Troster AI, et al.: The behavioral complications of pallidal stimulation: a case report. Brain Cogn 2000, 42:417–434.PubMedGoogle Scholar
  97. 97.
    Jahanshahi M, Ardouin CM, Brown RG, et al.: The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 2000, 123(Pt 6):1142–1154.PubMedGoogle Scholar
  98. 98.
    Halbig TD, Gruber D, Kopp UA, et al.: Pallidal stimulation in dystonia: effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry 2005, 76:1713–1716.PubMedGoogle Scholar
  99. 99.
    Fields JA, Troster AI, Wilkinson SB, et al.: Cognitive outcome following staged bilateral pallidal stimulation for the treatment of Parkinson’s disease. Clin Neurol Neurosurg 1999, 101:182–188.PubMedGoogle Scholar
  100. 100.
    Vingerhoets G, van der Linden C, Lannoo E, et al.: Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999, 66:297–304.PubMedGoogle Scholar
  101. 101.
    Troster AI, Fields JA, Wilkinson SB, et al.: Unilateral pallidal stimulation for Parkinson’s disease: neurobehavioral functioning before and 3 months after electrode implantation. Neurology 1997, 49:1078–1083.PubMedGoogle Scholar
  102. 102.
    Trepanier LL, Saint-Cyr JA, Lozano AM, Lang AE: Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 1998, 51:207–215.PubMedGoogle Scholar
  103. 103.
    Trepanier L, Saint-Cyr J, Lang A, Lozano A: Hemispherespecific cognitive and motor changes after unilateral posteroventral pallidotomy. Arch Neurol 1998, 55:881–883.PubMedGoogle Scholar
  104. 104.
    Rodriguez RL, Miller K, Bowers D, et al.: Mood and cognitive changes with deep brain stimulation. What we know and where we should go. Minerva Med 2005, 96:125–144.PubMedGoogle Scholar
  105. 105.
    Woods SP, Fields JA, Lyons KE, et al.: Neuropsychological and quality of life changes following unilateral thalamic deep brain stimulation in Parkinson’s disease: a one-year follow-up. Acta Neurochir (Wien) 2001, 143:1273–1277; discussion 1278.Google Scholar
  106. 106.
    Woods SP, Fields JA, Lyons KE, et al.: Pulse width is associated with cognitive decline after thalamic stimulation for essential tremor. Parkinsonism Relat Disord 2003, 9:295–300.PubMedGoogle Scholar
  107. 107.
    Fields JA, Troster AI, Woods SP, et al.: Neuropsychological and quality of life outcomes 12 months after unilateral thalamic stimulation for essential tremor. J Neurol Neurosurg Psychiatry 2003, 74:305–311.PubMedGoogle Scholar
  108. 108.
    Gabriels L, Cosyns P, Nuttin B, et al.: Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases. Acta Psychiatr Scand 2003, 107:275–282.PubMedGoogle Scholar
  109. 109.
    Abelson JL, Curtis GC, Sagher O, et al.: Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 2005, 57:510–516.PubMedGoogle Scholar
  110. 110.
    Nuttin B, Cosyns P, Demeulemeester H, et al.: Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 1999, 354:1526.PubMedGoogle Scholar
  111. 111.
    Shapira NA, Okun MS, Wint D, et al.: Panic and fear induced by deep brain stimulation. J Neurol Neurosurg Psychiatry 2006, 77:410–412.PubMedGoogle Scholar
  112. 112.
    Schaltenbrand G, Bailey P: Einführung in die stereotaktischen Operationen, mit einem Atlas des menschlichen Gehirns. Introduction to stereotaxis, with anatlas of the human brain. Stuttgart: Thieme; 1959.Google Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • Atchar Sudhyadhom
  • Frank J. Bova
  • Kelly D. Foote
  • Christian A. Rosado
  • Lindsey Kirsch-Darrow
  • Michael S. Okun
    • 1
    Email author
  1. 1.Department of NeurologyMcKnight Brain InstituteGainesvilleUSA

Personalised recommendations