Translational research in stroke: Taking advances in the pathophysiology and treatment of stroke from the experimental setting to clinical trials

Article

Abstract

Many advances have occurred regarding an increased understanding of the basic pathophysiology of ischemic brain injury that could lead to enhanced therapy for this disorder. Among the more important basic science advances are enhanced knowledge of the components of the ischemic cascade, the phenomenon of ischemic preconditioning, the potential relevance of hibernation, studies on gene expression in ischemic tissue, and imaging identification of the ischemic penumbra. The large number of unsuccessful prior clinical trials with a wide range of purported acute stroke therapies has provided many insights and lessons regarding how to perform better trials in the future. Translating these basic science and clinical trial design advances into effective and safe therapies will require increased interaction and cooperation between basic scientists and clinical researchers.

References and Recommended Reading

  1. 1.
    Hossmann KA: Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006, In press.Google Scholar
  2. 2.
    Lo EH, Dalkara T, Moskowitz MA: Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003, 4:399–415.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng YD, Al-Khoury L, Zivin JA: Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 2004, 1:36–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Birmingham K: What is translational research? Nat Med 2002, 8:647.PubMedCrossRefGoogle Scholar
  5. 5.
    Labiche LA, Grotta JC: Clinical trials for cytoprotection in stroke. NeuroRx 2004, 1:46–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Lees KR, Zivin JA, Ashwood T, et al.: NXY-059 for acute ischemic stroke. N Engl J Med 2006, 354:588–600.PubMedCrossRefGoogle Scholar
  7. 7.
    Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995, 333:1581–1587.CrossRefGoogle Scholar
  8. 8.
    Smith WS, Sung G, Starkman S, et al.: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005, 36:1432–1438.PubMedCrossRefGoogle Scholar
  9. 9.
    Khatri P, Neff J, Broderick JP, et al.: Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS-I. Stroke 2005, 36:2400–2403.PubMedCrossRefGoogle Scholar
  10. 10.
    Ringelstein EB, Biniek R, Weiller C, et al.: Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 1992, 42:289–298.PubMedGoogle Scholar
  11. 11.
    Fisher M: Characterizing the target of acute stroke therapy. Stroke 1997, 28:866–872.PubMedGoogle Scholar
  12. 12.
    Fisher M: The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis 2004, 17(Suppl 1):1–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Ginsberg MD: Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 2003, 34:214–223.PubMedCrossRefGoogle Scholar
  14. 14.
    Chong ZZ, Li F, Maiese K: Oxidative stress in the brain: novel cellular targets that govern survival during neuro-degenerative disease. Prog Neurobiol 2005, 75:207–246.PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher M, Ratan R: New perspectives on developing acute stroke therapy. Ann Neurol 2003, 53:10–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Stagliano NE, Perez-Pinzon MA, Moskowitz MA, Huang PL: Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 1999, 19:757–761.PubMedCrossRefGoogle Scholar
  17. 17.
    Kirino T: Ischemic tolerance. J Cereb Blood Flow Metab 2002, 22:1283–1296.PubMedCrossRefGoogle Scholar
  18. 18.
    Drew KL, Rice ME, Kuhn TB, Smith MA: Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neuro-degenerative diseases. Free Radic Biol Med 2001, 31:563–573.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharp FR, Lu A, Tang Y, Millhorn DE: Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 2000, 20:1011–1032.PubMedCrossRefGoogle Scholar
  20. 20.
    Lipton P: Ischemic cell death in brain neurons. Physiol Rev 1999, 79:1431–1568.PubMedGoogle Scholar
  21. 21.
    Traystman RJ: Animal models of focal and global cerebral ischemia. ILAR J 2003, 44:85–95.PubMedGoogle Scholar
  22. 22.
    Fukuda S, del Zoppo GJ: Models of focal cerebral ischemia in the nonhuman primate. ILAR J 2003, 44:96–104.PubMedGoogle Scholar
  23. 23.
    Hossmann KA: Experimental models for the investigation of brain ischemia. Cardiovasc Res 1998, 39:106–120.PubMedCrossRefGoogle Scholar
  24. 24.
    Henninger N, Sicard KM, Bouley J, et al.: The proteasome inhibitor VELCADE reduces infarction in rat models of focal cerebral ischemia. Neurosci Lett 2006, 398:300–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Kollmar R, Henninger N, Bardutzky J, et al.: Combination therapy of moderate hypothermia and thrombolysis in experimental thromboembolic stroke—an MRI study. Exp Neurol 2004, 190:204–212.PubMedCrossRefGoogle Scholar
  26. 26.
    Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999, 30:2752–2758.Google Scholar
  27. 27.
    O’Collins VE, Macleod MR, Donnan GA, et al.: 1,026 experimental treatments in acute stroke. Ann Neurol 2006, 59:467–477.PubMedCrossRefGoogle Scholar
  28. 28.
    Dirnagl U: Benc to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 2006, In Press.Google Scholar
  29. 29.
    Macleod MR, O’Collins T, Howells DW, Donnan GA: Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 2004, 35:1203–1238.PubMedCrossRefGoogle Scholar
  30. 30.
    Astrup J, Siesjo BK, Symon L: Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981, 12:723–725.PubMedGoogle Scholar
  31. 31.
    Hakim AM: The cerebral ischemic penumbra. Can J Neurol Sci 1987, 14:557–559.PubMedGoogle Scholar
  32. 32.
    Castellanos M, Sobrino T, Castillo J: Evolving paradigms for neuroprotection: molecular identification of is chemic penumbra. Cerebrovasc Dis 2006, 21(Suppl 2):71–79.PubMedCrossRefGoogle Scholar
  33. 33.
    Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999, 22:391–397.PubMedCrossRefGoogle Scholar
  34. 34.
    Baron JC: Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 1999, 9:193–201.PubMedCrossRefGoogle Scholar
  35. 35.
    Heiss WD, Graf R, Lottgen J, et al.: Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of positischemic reperfusion. J Cereb Blood Flow Metab 1997, 17:388–400.PubMedCrossRefGoogle Scholar
  36. 36.
    Marchal G, Beaudouin V, Rioux P, et al.: Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke 1996, 27:599–606.PubMedGoogle Scholar
  37. 37.
    Furlan M, Marchal G, Viader F, et al.: Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996, 40:216–226.PubMedCrossRefGoogle Scholar
  38. 38.
    Saita K, Chen M, Spratt NJ, et al.: Imaging the ischemic penumbra with 18F-fluoromisonidazole in a rat model of ischemic stroke. Stroke 2004, 35:975–980.PubMedCrossRefGoogle Scholar
  39. 39.
    Read SJ, Hirano T, Abbott DF, et al.: The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol 2000, 48:228–235.PubMedCrossRefGoogle Scholar
  40. 40.
    Sa de Camargo EC, Koroshetz WJ: Neuroimaging of ischemia and infarction. NeuroRx 2005, 2:265–276.PubMedCrossRefGoogle Scholar
  41. 41.
    Weber R, Ramos-Cabrer P, Hoehn M: Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 2006, 26:591–604.PubMedCrossRefGoogle Scholar
  42. 42.
    Schlaug G, Benfield A, Baird AE, et al.: The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 1999, 53:1528–1537.PubMedGoogle Scholar
  43. 43.
    Kidwell CS, Alger JR, Saver JL: Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003, 34:2729–2735.PubMedCrossRefGoogle Scholar
  44. 44.
    Shen Q, Fisher M, Sotak CH, Duong TQ: Effects of reperfusion on ADC and CBF pixel-by-pixel dynamics in stroke: characterizing tissue fates using quantitative diffusion and perfusion imaging. J Cereb Blood Flow Metab 2004, 24:280–290.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu O, Koroshetz WJ, Ostergaard L, et al.: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted MR imaging. Stroke 2001, 32:933–942.PubMedGoogle Scholar
  46. 46.
    Furlan AJ, Eyding D, Albers GW, et al.: Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37:1227–1231.PubMedCrossRefGoogle Scholar
  47. 47.
    Hacke W, Albers G, Al-Rawi Y, et al.: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005, 36:66–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Albers GW, Thiijs VN, Wechsler L, et al.: Results of the Diffusion-weighted imaging evaluation for understanding stroke evolution (DEFUSE) study [abstract]. Stroke 2006, 37:635.CrossRefGoogle Scholar
  49. 49.
    Ribo M, Molina CA, Rovira A, et al.: Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3-to 6-hour window using multimodal transcranial Doppler/MRI selection protocol. Stroke 2005; 36:602–606.PubMedCrossRefGoogle Scholar
  50. 50.
    Thomalla G, Schwark C, Sobesky J, et al.: Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke 2006, 37:852–858.PubMedCrossRefGoogle Scholar
  51. 51.
    Wintermark M, Maeder P, Thiran JP, et al.: Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 2001, 11:1220–1230.PubMedCrossRefGoogle Scholar
  52. 52.
    Wintermark M, Reichhart M, Thiran JP, et al.: Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002, 51:417–432.PubMedCrossRefGoogle Scholar
  53. 53.
    Wintermark M, Flanders AE, Velthuis B, et al.: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006, 37:979–985.PubMedCrossRefGoogle Scholar
  54. 54.
    Murphy BD, Fox AJ, Lee DH, et al.: Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke 2006, 37:1771–1777.PubMedCrossRefGoogle Scholar
  55. 55.
    Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 2001, 32:1598–1606.Google Scholar
  56. 56.
    Gladstone DJ, Black SE, Hakim AM: Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 2002, 33:2123–2336.PubMedCrossRefGoogle Scholar
  57. 57.
    Sugawara T, Fujimura M, Noshita N, et al.: Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004, 1:17–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Marshall JW, Duffin KJ, Green AR, Ridley RM: NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 2001, 32:190–198.PubMedGoogle Scholar
  59. 59.
    Marshall JW, Cummings RM, Bowes LJ, et al.: Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke 2003, 34:2228–2233.PubMedCrossRefGoogle Scholar
  60. 60.
    Lees KR, Barer D, Ford GA, et al.: Tolerability of NXY-059 at higher target concentrations in patients with acute stroke. Stroke 2003, 34:482–487.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations