Current Neurology and Neuroscience Reports

, Volume 6, Issue 4, pp 287–294

PARK8 LRRK2 parkinsonism

Article

Abstract

Parkinson’s disease (PD) is the most common form of parkinsonism, affecting nearly 2% of people older than 65 years of age. Symptomatic treatment has been available for decades, but to date there is no treatment retarding disease progression. Over the past decade several genes causing parkinsonism have been identified in families with a mendelian pattern of inheritance. The most recent is the leucine-rich repeat kinase 2 (LRRK2) gene. Pathogenic mutations in the LRRK2 gene cause a significant proportion of clinically typical, late-onset PD. This review summarizes the current knowledge on the contribution of LRRK2 mutations in understanding parkinsonism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Ferri CP, Prince M, Brayne C, et al.: Global prevalence of dementia: a Delphi consensus study. Lancet 2005, 366:2112.PubMedCrossRefGoogle Scholar
  2. 2.
    Aarsland D, Zaccai J, Brayne C: A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 2005, 20:1255.PubMedCrossRefGoogle Scholar
  3. 3.
    Zaccai J, McCracken C, Brayne C: A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 2005, 34:561.PubMedCrossRefGoogle Scholar
  4. 4.
    de RijkMC, Launer LJ, Berger K, et al.: Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000; 54:S21.PubMedGoogle Scholar
  5. 5.
    Aarsland D, Larsen JP, Lim NG, et al.: Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999, 67:492.PubMedCrossRefGoogle Scholar
  6. 6.
    Chaudhuri KR, Healy DG, Schapira AH: Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006, 5:235. A review of the nonmotor complications in PD.PubMedCrossRefGoogle Scholar
  7. 7.
    Braak H, Del Tredici K, Rub U, et al.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003, 24:197.PubMedCrossRefGoogle Scholar
  8. 8.
    Gasser T: Genetics of Parkinson’s disease. Curr Opin Neurol 2005, 18:363. Review of genes involved in parkinsonism.PubMedCrossRefGoogle Scholar
  9. 9.
    Lewthwaite AJ, Nicholl DJ: Genetics of parkinsonism. Curr Neurol Neurosci Rep 2005, 5:397. Review of genes involved in parkinsonism.PubMedGoogle Scholar
  10. 10.
    Funayama M, Hasegawa K, Kowa H, et al.: A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002, 51:296. The first article establishing linkage to the PARK8 locus.PubMedCrossRefGoogle Scholar
  11. 11.
    Zimprich A, Muller-Myhsok B, Farrer M, et al.: The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet 2004, 74:11.PubMedCrossRefGoogle Scholar
  12. 12.
    Paisan-Ruiz C, Saenz A, Lopez de Munain A, et al.: Familial Parkinson’s disease: clinical and genetic analysis of four Basque families. Ann Neurol 2005, 57:365.PubMedCrossRefGoogle Scholar
  13. 13.
    Zimprich A, Biskup S, Leitner P, et al.: Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron 2004, 44:601. One of the to back-to-back papers describing LRRK2 as the gene causing autosomal dominant PD linked to PARK8.PubMedCrossRefGoogle Scholar
  14. 14.
    Paisan-Ruiz C, Jain S, Evans EW, et al.: Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004, 44:595. The other back-to-back paper describing LRRK2 as the gene causing autosomal dominant PD linked to PARK8.PubMedCrossRefGoogle Scholar
  15. 15.
    Aasly JO, Toft M, Fernandez-Mata I, et al.: Clinical features of LRRK2-associated Parkinson’s disease in central Norway. Ann Neurol 2005, 57:762. One of the early clinical descriptions of Lrrk2 G2019S substitution carriers.PubMedCrossRefGoogle Scholar
  16. 16.
    Infante J, Rodriguez E, Combarros O, et al.: LRRK2 G2019S is a common mutation in Spanish patients with late-onset Parkinson’s disease. Neurosci Lett 2006, 395:224–226.PubMedCrossRefGoogle Scholar
  17. 17.
    Lesage S, Durr A, Tazir M, et al.: LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 2006, 354:422. One of the first reports on very high frequencies of G2019S in North African Arabs.PubMedCrossRefGoogle Scholar
  18. 18.
    Di Fonzo A, Tassorelli C, De Mari M, et al.: Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson’s disease. Eur J Hum Genet 2006, 14:322–331.CrossRefGoogle Scholar
  19. 19.
    Gilks WP, Abou-Sleiman PM, Gandhi S, et al.: A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005, 365:415.PubMedGoogle Scholar
  20. 20.
    Kachergus J, Mata IF, Hulihan M, et al.: Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 2005, 76:672. One of the first reports identifying the G2019S substitution and describing a common haplotype that indicates a common founder of the G2019S substitution.PubMedCrossRefGoogle Scholar
  21. 21.
    Galpern WR, Lang AE: Interface between tauopathies and synucleinopathies: A tale of two proteins. Ann Neurol 2006, 59:449.PubMedCrossRefGoogle Scholar
  22. 22.
    Bosgraaf L, Van HaastertPJ: Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 2003; 1643:5.PubMedCrossRefGoogle Scholar
  23. 23.
    Funayama M, Hasegawa K, Ohta E, et al.: An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol 2005, 57:918.PubMedCrossRefGoogle Scholar
  24. 24.
    Mata IF, Kachergus JM, Taylor JP, et al.: Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics 2005, 6:171.PubMedCrossRefGoogle Scholar
  25. 25.
    Khan NL, Jain S, Lynch JM, et al.: Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain 2005, 128:2786. This report includes PET findings associated with LRRK2 mutations.PubMedCrossRefGoogle Scholar
  26. 26.
    Skipper L, Shen H, Chua E, et al.: Analysis of LRRK2 functional domains in nondominant Parkinson disease. Neurology 2005, 65:1319.PubMedCrossRefGoogle Scholar
  27. 27.
    Paisan-Ruiz C, Lang AE, Kawarai T, et al.: LRRK2 gene in Parkinson disease: mutation analysis and case control association study. Neurology 2005, 65:696.PubMedCrossRefGoogle Scholar
  28. 28.
    Zabetian CP, Samii A, Mosley AD, et al.: A clinic-based study of the LRRK2 gene in Parkinson disease yields new mutations. Neurology 2005, 65:741.PubMedCrossRefGoogle Scholar
  29. 29.
    Tomiyama H, Li Y, Funayama M, et al.: Clinicogenetic study of mutations ini LRRK2 exon 41 in Parkinson’s disease patients from 18 countries. Mov Disord 2006, [e-pub ahead of print].Google Scholar
  30. 30.
    Biskup S, Mueller JC, Sharma M, et al.: Common variants of LRRK2 are not associated with sporadic Parkinson’s disease. Ann Neurol 2005, 58:905. A comprehensive evaluation of common variants within the LRRK2 gene.PubMedCrossRefGoogle Scholar
  31. 31.
    Paisan-Ruiz C, Evans EW, Jain S, et al.: Testing association between LRRK2 and Parkinson’s disease and investigating linkage disequilibrium 10.1136/jmg.2005.036889. J Med Genet 2006, 43:e09.CrossRefGoogle Scholar
  32. 32.
    Skipper L, Li Y, Bonnard C, et al.: Comprehensive evaluation of common genetic variation within LRRK2 reveals evidence for association with sporadic Parkinson’s disease. Hum Mol Genet 2005, 14:3549.PubMedCrossRefGoogle Scholar
  33. 33.
    Di Fonzo A, Rohe CF, Ferreira J, et al.: A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 2005, 365:412.Google Scholar
  34. 34.
    Farrer M, Stone J, Mata IF, et al.: LRRK2 mutations in Parkinson disease. Neurology 2005, 65:738.PubMedCrossRefGoogle Scholar
  35. 35.
    Nichols WC, Pankratz N, Hernandez D, et al.: Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet 2005, 365:410.PubMedGoogle Scholar
  36. 36.
    Kay DM, Zabetian CP, Factor SA, et al.: Parkinson’s disease and LRRK2: Frequency of a common mutation in U.S. movement disorder clinics. Mov Disord 2005, 20:1077–1078.PubMedCrossRefGoogle Scholar
  37. 37.
    Tan EK, Shen H, Tan LC, et al.: The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson’s disease patients. Neurosci Lett 2005, 384:327.PubMedCrossRefGoogle Scholar
  38. 38.
    Lu CS, Simons EJ, Wu-Chou YH, et al.: The LRRK2 I2012T, G2019S, and I2020T mutations are rare in Taiwanese patients with sporadic Parkinson’s disease. Parkinsonism Relat Disord 2005, 11:521.PubMedCrossRefGoogle Scholar
  39. 39.
    Ozelius LJ, Senthil G, Saunders-Pullman R, et al.: LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 2006; 354:424. Reporting very high frequencies of G2019S in Ashkenazi Jews.PubMedCrossRefGoogle Scholar
  40. 40.
    Mata IF, Ross OA, Kachergus J, et al.: LRRK2 mutations are a common cause of Parkinson’s disease in Spain. Eur J Neurol 2006, 13:391–394.PubMedCrossRefGoogle Scholar
  41. 41.
    Bras JM, Guerreiro RJ, Ribeiro MH, et al.: G2019S dardarin substitution is a common cause of Parkinson’s disease in a Portuguese cohort. Mov Disord 2005, 20:1653.PubMedCrossRefGoogle Scholar
  42. 42.
    Lesage S, Leutenegger AL, Ibanez P, et al.: LRRK2 haplotype analyses in European and North African families with Parkinson disease: a common founder for the G2019S mutation dating from the 13th century. Am J Hum Genet 2005, 77:330.PubMedCrossRefGoogle Scholar
  43. 43.
    Mata IF, Taylor JP, Kachergus J, et al.: LRRK2 R1441G in Spanish patients with Parkinson’s disease. Neurosci Lett 2005, 382:309.PubMedCrossRefGoogle Scholar
  44. 44.
    Wszolek ZK, Pfeiffer RF, Tsuboi Y, et al.: Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 2004, 62:1619.PubMedGoogle Scholar
  45. 45.
    Wszolek ZK, Vieregge P, Uitti RJ, et al.: German-Canadian family (family A) with parkinsonism, amyotrophy, and dementia: longitudinal observations. Parkinsonism Relat Disord 1997, 3:125.CrossRefPubMedGoogle Scholar
  46. 46.
    Ross OA, Toft M, Whittle AJ, et al.: Lrrk2 and Lewy body disease. Ann Neurol 2006, 59:388. A report on pathologic features in G2019S substitution carriers.PubMedCrossRefGoogle Scholar
  47. 47.
    Giasson BI, Covy JP, Bonini NM, et al.: Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006, 59:315.PubMedCrossRefGoogle Scholar
  48. 48.
    Hernandez DG, Paisan-Ruiz C, McInerney-Leo A, et al.: Clinical and positron emission tomography of Parkinson’s disease caused by LRRK2. Ann Neurol 2005, 57:453. Clinical and PET features of LRRK2.PubMedCrossRefGoogle Scholar
  49. 49.
    Adams JR, van Netten H, Schulzer M, et al.: PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 2005, 128:2777. PET findings in LRRK2 mutation carriers, including evidence of presymptomatic compensation in mutation carriers.PubMedCrossRefGoogle Scholar
  50. 50.
    Toft M, Sando SB, Melquist S, et al.: LRRK2 mutations are not common in Alzheimer’s disease. Mech Ageing Dev 2005, 126:1201.PubMedCrossRefGoogle Scholar
  51. 51.
    Zabetian CP, Lauricella CJ, Tsuang DW, et al.: Analysis of the LRRK2 G2019S mutation in Alzheimer Disease. Arch Neurol 2006, 63:156.PubMedCrossRefGoogle Scholar
  52. 52.
    Ross OA, Whittle AJ, Cobb SA, et al.: Lrrk2 R1441 substitution and progressive supranuclear palsy. Neuropathol Appl Neurobiol 2006, 32:23.PubMedCrossRefGoogle Scholar
  53. 53.
    Kay DM, Kramer P, Higgins D, et al.: Escaping Parkinson’s disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord 2005, 20:1077.PubMedCrossRefGoogle Scholar
  54. 54.
    Gloeckner CJ, Kinkl N, Schumacher A, et al.: The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006; 15:223. One of the initial reports on functional research on LRRK2 mutations.PubMedCrossRefGoogle Scholar
  55. 55.
    West AB, Moore DJ, Biskup S, et al.: Parkinson’s diseaseassociated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005, 102:16842. The first report showing that the LRRK2 mutations enhance kinase activity.PubMedCrossRefGoogle Scholar
  56. 56.
    Silva RM, Kuan CY, Rakic P, Burke RE: Mixed lineage kinase-c-jun N-terminal kinase signaling pathway: a new therapeutic target in Parkinson’s disease. Mov Disord 2005, 20:653.PubMedCrossRefGoogle Scholar
  57. 57.
    Bialecka M, Hui S, Klodowska-Duda G, et al.: Analysis of LRRK 2 G 2019 S and I 2020 T mutations in Parkinson’s disease. Neurosci Lett 2005, 390:1.PubMedCrossRefGoogle Scholar
  58. 58.
    Gosal D, Ross OA, Wiley J, et al.: Clinical traits of LRRK2-associated Parkinson’s disease in Ireland: a link between familial and idiopathic PD. Parkinsonism Relat Disord 2005, 11:349.PubMedCrossRefGoogle Scholar
  59. 59.
    Goldwurm S, Di Fonzo A, Simons EJ, et al.: The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. J Med Genet 2005, 42:e65.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Department of Neuroscience and NeurologyMayo Clinic College of MedicineJacksonvilleUSA

Personalised recommendations