Current Neurology and Neuroscience Reports

, Volume 5, Issue 6, pp 488–493

Cardiopulmonary complications of brain injury

  • Alexander Grunsfeld
  • Jeffery J. Fletcher
  • Barnett R. Nathan
Article

Abstract

Cardiac and pulmonary complications following acute neurologic injury are common and may be a cause of morbidity and mortality in this population. Examples include hypertension, arrhythmias, ventricular dysfunction, pulmonary edema, shock, and sudden death. Primary neurologic events are represented by stroke, subarachnoid hemorrhage, traumatic brain injury, epilepsy, and encephalitis and have been frequently reported. Given the high frequency of these conditions, it is important for physicians to become familiar with their pathophysiology, allowing for more prompt and appropriate treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Silver FL, Norris JW, Lewis AJ, Hachinski VC: Early mortality following stroke: a prospective review. Stroke 1984, 15:492–496.PubMedGoogle Scholar
  2. 2.
    Mayer SA, Lin J, Homma S, et al.: Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999, 30:780–786.PubMedGoogle Scholar
  3. 3.
    Dimant J, Grob D: Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke 1977, 8:448–455.PubMedGoogle Scholar
  4. 4.
    Brander L, Weinberger D, Henzen C: Heart and brain: a case of focal myocytolysis in severe pneumococcal meningoencephalitis with review of the contemporary literature. Anaesth Intensive Care 2003, 31:202–207.PubMedGoogle Scholar
  5. 5.
    Prager P, Nolan M, Andrews IP: Neurogenic pulmonary edema in enterovirus 71 encephalitis is not uniformly fatal but causes severe morbidity in survivors. Pediatr Crit Care Med 2003, 4:377–381.PubMedCrossRefGoogle Scholar
  6. 6.
    Kantor HL, Krishnan SC: Cardiac problems in patients with neurological disease. Cardiol Clin 1995, 13:179–208.PubMedGoogle Scholar
  7. 7.
    Cushing H: The blood pressure reaction of acute cerebral compression illustrated by cases of intracranial hemorrhage. Am J Med Sci 1903, 125:1017–1044.CrossRefGoogle Scholar
  8. 8.
    Shanahan WT: Acute pulmonary edema as a complication of epileptic seizures. NY Med J 1908, 37:54–56.Google Scholar
  9. 9.
    Bulsara KR, McGirt MJ, Liao L, et al.: Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg 2003, 98:524–528. First study suggesting guidelines to differentiate stunned myocardium from ischemic heart disease allowing for earlier surgical intervention. However, it was based on a small set of patients and further studies are necessary.PubMedGoogle Scholar
  10. 10.
    Kolin A, Norris J: Myocardial damage from acute cerebral lesions. Stroke 1984, 15:990–993.PubMedGoogle Scholar
  11. 11.
    Doshi R, Neil-Dwyer G: A clinicopathological study of patients following a subarachnoid hemorrhage. J Neurosurg 1980, 52:295–301.PubMedGoogle Scholar
  12. 12.
    Burch GE, Sun SC, Calcolough H, et al.: Acute myocardial lesions following experimentally induced intracranial hemorrhage in mice: a histologic and histochemical study. Arch Pathol 1967, 84:517–521.PubMedGoogle Scholar
  13. 13.
    Kono T, Morita H, Kuroiwa T, et al.: Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol 1994, 24:636–639.PubMedCrossRefGoogle Scholar
  14. 14.
    Malik AB: Mechanism of neurogenic pulmonary edema. Circ Res 1985, 57:1–18.PubMedGoogle Scholar
  15. 15.
    Kenedi I, Csanda E: Electrographic changes in response to electrical stimulation of the cerebral cortex. Acta Physiol Acad Sci Hung 1959, 16:165–170.PubMedGoogle Scholar
  16. 16.
    Oppenheimer M, Hopkins D: Suprabulbar neuronal regulation of the heart. In Neurocardiology. Edited by Armour JA and Ardell JL. New York: Oxford University Press; 1994:309–342.Google Scholar
  17. 17.
    Oppenheimer SM, Cechetto DF: Cardiac chronotropic organization of the rat insular cortex. Brain Res 1990, 533:66–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Hachinski VC, Oppenheimer SM, Wilson JX, et al.: Asymmetry of sympathetic consequences of experimental stroke. Arch Neurol 1992, 49:697–702.PubMedGoogle Scholar
  19. 19.
    Wittstein IS, Thiemann DR, Lima JA, et al.: Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005, 352:539–548. This article provides evidence that myocardial stunning seen after sudden emotional stress is similar in character and mechanism to the myocardial stunning seen after neurologic injury. It provides further backbone to the theory that sympathetic discharge and not myocardial ischemia is responsible for the myocardial injury.PubMedCrossRefGoogle Scholar
  20. 20.
    Melville KI, Blum B, Shister HE, Silver MD: Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol 1963, 12:781.PubMedCrossRefGoogle Scholar
  21. 21.
    Spencer SE, Sawyer WB, Loewy AD: L-glutamate mapping of cardioreactive areas in the rat posterior hypothalamus. Brain Res 1990, 511:149.PubMedCrossRefGoogle Scholar
  22. 22.
    Gelsema AJ, Roe MJ, Calaresu FR: Neurally mediated cardiovascular responses to stimulation of cell bodies in the hypothalamus of the rat. Brain Res 1989, 482:67–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Weinberg SJ, Fuster JM: Electrocardiographic changes produced by localized hypothalamic stimulations. Ann Intern Med 1960, 53:332–334.PubMedGoogle Scholar
  24. 24.
    Verrier L, Antzelevitch C: Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol 2004, 19:2–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Martin H: The hypothalamus and the regulation of endocrine and visceral functions. In Neuroanatomy Text and Atlas, edn 2. Edited by Martin JH. Stamford, CT: Appleton & Lange; 1996:419–445.Google Scholar
  26. 26.
    Cropp C, Manning G: Electrocardiographic change simulating myocardial ischemia and infarction associated with spontaneous intracranial hemorrhage. Circulation 1960, 22:24–27.Google Scholar
  27. 27.
    Andreoli A, di Pasquale G, Pinelli G, et al.: Subarachnoid hemorrhage: frequency and severity of cardiac arrhythmias. A survey of 70 cases studied in the acute phase. Stroke 1987, 18:558–564.PubMedGoogle Scholar
  28. 28.
    Mayer SA, Lin J, Homma S, et al.: Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke 1999, 30:780–786.PubMedGoogle Scholar
  29. 29.
    Brouwers PJ, Wijdicks EF, Hasan D, et al.: Serial electrocardiographic recording in aneurysmal subarachnoid hemorrhage. Stroke 1989, 20:1162–1167.PubMedGoogle Scholar
  30. 30.
    Salvati M, Cosentino F, Artico M, et al.: Electrocardiographic changes in subarachnoid hemorrhage secondary to cerebral aneurysm. Report of 70 cases. Ital J Neurol Sci 1992, 13:409–413.PubMedCrossRefGoogle Scholar
  31. 31.
    Burch GE, Meyers R, Abildskov JA: A new electrocardiogram pattern observed in cerebrovascular accidents. Circulation 1954, 9:719–723.PubMedGoogle Scholar
  32. 32.
    Greenhoot JA, Reichenbach DD: Cardiac injury and subarachnoid hemorrhage. A clinical, pathological and physiological correlation. J Neurosurg 1969, 30:521–531.PubMedGoogle Scholar
  33. 33.
    Zaroff JG, Rordorf GA, Titus JS, et al.: Regional myocardial perfusion after experimental subarachnoid hemorrhage. Stroke 2000, 31:1136–1143.PubMedGoogle Scholar
  34. 34.
    Jain R, Deveikis J, Thompson BG: Management of patients with stunned myocardium associated with subarachnoid hemorrhage. Am J Neuroradiol 2004, 25:126–129.PubMedGoogle Scholar
  35. 35.
    Hammermeister KE, Reichenbach DD: QRS changes, pulmonary edema and myocardial necrosis associated with subarachnoid hemorrhage. Am Heart J 1969, 78:94–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Norris JW, Hachinski VC, Myers MG, et al.: Serum cardiac enzymes in stroke. Stroke 1979, 10:548–553.PubMedGoogle Scholar
  37. 37.
    Sommargren CE, Zaroff JG, Banki N, Drew BJ: Electrocardiographic repolarization abnormalities in subarachnoid hemorrhage. J Electrocardiol 2002, 35:257–262.PubMedCrossRefGoogle Scholar
  38. 38.
    Samuels MA: Neurogenic heart disease: a unifying hypothesis. Am J Cardiol 1987, 60:15–19.CrossRefGoogle Scholar
  39. 39.
    Lown B, Verrier R: Neural activity and ventricular fibrillation. N Engl J Med 1976, 294:1165–1170.PubMedCrossRefGoogle Scholar
  40. 40.
    Levy N, Blattberg B: Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 1976, 38:81–84.PubMedGoogle Scholar
  41. 41.
    Kolman S, Verrier L, Lown B: The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation 1975, 52:578–585.PubMedGoogle Scholar
  42. 42.
    Massetani R, Strata G, Galli R, et al.: Alteration of cardiac function in patients with temporal lobe epilepsy: different roles of EEG-ECG monitoring and spectral analysis of RR variability. Epilepsia 1997, 38:363–369.PubMedCrossRefGoogle Scholar
  43. 43.
    Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC: Cardiovascular effects of human insular cortex stimulation. Neurology 1992, 42:1727–1732.PubMedGoogle Scholar
  44. 44.
    Tokgozoglu SL, Batur MK, Topuoglu MA, et al.: Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 1999, 30:1307–1311.PubMedGoogle Scholar
  45. 45.
    Kulshreshtha N, Zhang ZH, Oppenheimer SM: Effects of insular lesions on the rat baroreceptor reflex. Soc Neurosci Abstracts 1996, 22:157.Google Scholar
  46. 46.
    Oppenheimer M, Martin M, Kedem G: Left insular cortex lesions perturb cardiac autonomic tone. Clin Auton Res 1996, 6:131–140.PubMedCrossRefGoogle Scholar
  47. 47.
    Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF: Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res 1991, 550:115–121.PubMedCrossRefGoogle Scholar
  48. 48.
    Darbin O, Casebeer DJ, Naritoku DK: Cardiac dysrhythmia associated with the immediate postictal state after maximal electroshock in freely moving rat. Epilepsia 2002, 43:336–341.PubMedCrossRefGoogle Scholar
  49. 49.
    Cropp GJ, Manning GW: Electrocardiographic changes simulating myocardial ischaemia and infarction associated with spontaneous intracranial haemorrhage. Circulation 1960, 22:25–38.PubMedGoogle Scholar
  50. 50.
    Shuster S: The electrocardiogram in subarachnoid haemorrhage. Br Heart J 1960, 22:316–320.PubMedGoogle Scholar
  51. 51.
    Galloon S, Rees GA, Briscoe CE, et al.: Prospective study of electrocardiographic changes associated with subarachnoid haemorrhage. BJA 1972, 44:511–516.PubMedCrossRefGoogle Scholar
  52. 52.
    Solenski NJ, Haley EC, Kassell NF, et al.: Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med 1995, 2:1007–1017.CrossRefGoogle Scholar
  53. 53.
    Tung P, Kopelnik A, Banki N, et al.: Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004, 35:548–551.PubMedCrossRefGoogle Scholar
  54. 54.
    Deibert E, Barzilai B, Braverman AC, et al.: Clinical significance of elevated troponin I levels in patients with nontraumatic subarachnoid hemorrhage. J Neurosurg 2003, 98:741–746.PubMedGoogle Scholar
  55. 55.
    Parekh N, Venkatesh B, Cross D, et al.: Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 2000, 36:1328–1335.PubMedCrossRefGoogle Scholar
  56. 56.
    Takeno Y, Eno S, Hondo T, et al.: Pheochromocytoma with reversal of tako-tsubo-like transient left ventricular dysfunction: a case report. J Cardiol 2004, 43:281–287.PubMedGoogle Scholar
  57. 57.
    Cupo P, Jurca M, Azeedo-Marques MM, et al.: Severe scorpion envenomation in Brazil. Clinical, laboratory and anatomopathological aspects. Rev Inst Med Trop Sao Paulo 1994, 36:67–76.PubMedGoogle Scholar
  58. 58.
    Pilati CF, Clark RS, Gilloteaux J, et al.: Excessive sympathetic nervous system activity decreases myocardial contractility. Proc Soc Exp Biol Med 1990, 193:225–231.PubMedGoogle Scholar
  59. 59.
    Kaye MP, McDonald RH, Randall WC: Systolic hypertension and subendocardial hemorrhages produced by electrical stimulation of the stellate ganglion. Circ Res 1961, 9:1164–1170.PubMedGoogle Scholar
  60. 60.
    Simmons RL, Martin AM Jr, Heisterkamp CA 3rd, Ducker TB: Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann Surg 1969, 170:39–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Theodore J, Robin ED: Speculations on neurogenic pulmonary edema (NPE). Am Rev Respir Dis 1976, 113:405–411.PubMedGoogle Scholar
  62. 62.
    Cruickshank JM, Neil-Dwyer G, Lane J: The effect of oral propranolol upon the ECG changes occurring in subarachnoid haemorrhage. Cardiovasc Res 1975, 9:236–245.PubMedGoogle Scholar
  63. 63.
    Offerhaus L, van Gool J: Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc Res 1969, 3:433–440.PubMedCrossRefGoogle Scholar
  64. 64.
    Mertes PM, Carteaux JP, Jaboin Y, et al.: Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation 1994, 57:371–377.PubMedCrossRefGoogle Scholar
  65. 65.
    Tung P, Kopelnik A, Banki N, et al.: Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 2004, 35:548–551.PubMedCrossRefGoogle Scholar
  66. 66.
    Lacy CR, Contrada RJ, Robbins ML, et al.: Coronary vasoconstriction induced by mental stress (simulated public speaking). Am J Cardiol 1995, 75:503–505.PubMedCrossRefGoogle Scholar
  67. 67.
    Sadamatsu K, Tashiro H, Maehira N, Yamamoto K: Coronary microvascular abnormality in the reversible systolic dysfunction observed after noncardiac disease. Jpn Circ J 2000, 64:789–792.PubMedCrossRefGoogle Scholar
  68. 68.
    Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH: Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr 2000, 13:774–779.PubMedCrossRefGoogle Scholar
  69. 69.
    Pollick C, Cujec B, Parker S, Tator C: Left ventricular wall motion abnormalities in subarachnoid hemorrhage: an echocardiographic study. J Am Coll Cardiol 1988, 12:60–605.Google Scholar
  70. 70.
    Richards P: Pulmonary oedema and intracranial lesions. BMJ 1963, 5349:83–86.CrossRefGoogle Scholar
  71. 71.
    Paine R, Smith J, Howard F: Pulmonary oedema in patients dying with diseases of the central nervous system. JAMA 1952, 149:643–646.Google Scholar
  72. 72.
    Simmons RL, Martin AM, Heisterkamp CA, et al.: Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann Surg 1969, 170:39–44.PubMedCrossRefGoogle Scholar
  73. 73.
    Fontes RB, Aguiar PH, Zanetti MV, et al.: Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003, 15:144–150.PubMedCrossRefGoogle Scholar
  74. 74.
    Mishriki YY: Hypoglycemia-induced neurogenic-type pulmonary edema: an underrecognized association. Endocr Pract 2004, 10:429–431.PubMedGoogle Scholar
  75. 75.
    Fontes RB, Aguiar PH, Zanetti MV, et al.: Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003, 15:144–150.PubMedCrossRefGoogle Scholar
  76. 76.
    Theodore J, Robin ED: Speculations on neurogenic pulmonary edema. Am Rev Respir Dis 1976, 113:405–411.PubMedGoogle Scholar
  77. 77.
    Bowers RE, McKeen CR, Park BE, et al.: Increased pulmonary vascular permeability follows intracranial hypertension in sheep. Am Rev Respir Dis 1979, 119:637–641.PubMedGoogle Scholar
  78. 78.
    Simon RP, Bayne LL, Tranbaugh RF, et al.: Elevated pulmonary lymph flow and protein content during status epilepticus in sheep. J Appl Physiol 1982, 52:91–95.PubMedGoogle Scholar
  79. 79.
    McClellan MD, Dauber IM, Weil JV: Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol 1989, 67:1185–1191.PubMedGoogle Scholar
  80. 80.
    Maron MB, Dawson CA: Pulmonary venoconstriction caused by elevated cerebrospinal fluid in the dog. J Appl Physiol 1980, 49:73–78.PubMedGoogle Scholar
  81. 81.
    Johnston SC, Darragh TM, Simon RP: Postictal pulmonary edema requires pulmonary vascular pressure increases. Epilepsia 1996, 37:428–432.PubMedCrossRefGoogle Scholar
  82. 82.
    Smith WS, Matthay MA: Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 1997, 111:1326–1333.PubMedGoogle Scholar
  83. 83.
    Cruickshank JM, Neil-Dwyer G, Degaute JP, et al.: Reduction of stress/catecholamine-induced cardiac necrosis by beta 1-selective blockade. Lancet 1987, 2:585–589.PubMedCrossRefGoogle Scholar
  84. 84.
    Sander D, Winbeck K, Klingelhofer J, et al.:: Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001, 57:833–838.PubMedGoogle Scholar

Copyright information

© Current Science Inc. 2005

Authors and Affiliations

  • Alexander Grunsfeld
  • Jeffery J. Fletcher
  • Barnett R. Nathan
    • 1
  1. 1.Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations