Advertisement

Current Neurology and Neuroscience Reports

, Volume 2, Issue 3, pp 259–266 | Cite as

Genetic analysis of multiple sclerosis

  • Alastair Compston
  • Stephen Sawcer
Article

Abstract

The increased recurrence risk within families indicates a role for genetic factors in the etiology of multiple sclerosis. Genes may influence susceptibility to the development of multiple sclerosis and the subsequent course of the disease. To date, associations have only been demonstrated consistently with class II major histocompatibility complex (MHC) alleles. The relatively low yield from additional candidate gene studies is only modestly advanced by several whole-genome linkage analyses, and by the first in a series of planned whole-genome linkage disequilibrium screens for allelic associations. The aims of linkage and association are to narrow the search for chromosomal regions encoding genes for multiple sclerosis and, with information from the human gene project, suggest new positional candidates. In time, it is expected that these genes will include some that confer susceptibility to the general process of autoimmunity, others that are specific for multiple sclerosis in all populations, some that act only in defined ethic groups, and those that determine particular phenotypes or shape the clinical course. These genetic analyses are predicated on the assumption that multiple sclerosis is one disease; a major part of future studies will be to resolve the question of disease heterogeneity in multiple sclerosis. When eventually in place, the potential of this genetic knowledge for improved understanding of the pathogenesis of multiple sclerosis and designing novel treatments is considerable.

Keywords

Multiple Sclerosis Linkage Disequilibrium Major Histocompatibility Complex Human Leukocyte Antigen Human Leukocyte Antigen Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Sadovnick AD, Baird PA, Ward RH: Multiple sclerosis; updated risks for relatives. Am J Med Genet 1988, 29:533–541.PubMedCrossRefGoogle Scholar
  2. 2.
    Robertson NP, Fraser M, Deans J, et al.: Age adjusted recurrence risks for relatives of patients with multiple sclerosis. Brain 1996, 119:449–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Carton H, Vlietinck R, Debruyne J, et al.: Recurrence risks of multiple sclerosis in relatives of patients in Flanders, Belgium. J Neurol Neurosurg Psychiatry 1996, 62:329–333.Google Scholar
  4. 4.
    French Research Group on Multiple Sclerosis: Multiple Sclerosis in 54 twinships: concordance rate is independent of zygosity. Ann Neurol 1992, 32:724–727.CrossRefGoogle Scholar
  5. 5.
    Sadovnick AD, Armstrong H, Rice GP, et al.: A populationbased study of multiple sclerosis in twins: update. Ann Neurol 1993, 33:281–285.PubMedCrossRefGoogle Scholar
  6. 6.
    Mumford CJ, Wood NW, Kellar-Wood HF, et al.: The British Isles survey of multiple sclerosis in twins. Neurology 1994, 44:11–15.PubMedGoogle Scholar
  7. 7.
    Ebers GC, Sadovnick AD, Risch NJ: A genetic basis for familial aggregation in multiple sclerosis. Nature 1995, 377:150–151.PubMedCrossRefGoogle Scholar
  8. 8.
    Sadovnick AD, Ebers GC, Dyment DA, et al.: Evidence for genetic basis of multiple sclerosis. Lancet 1996, 347:1728–1730.PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson NP, O’Riordan JI, Chataway J, et al.: Clinical characteristics and offspring recurrence rates of conjugal multiple sclerosis. Lancet 1997, 349:1587–1590.PubMedCrossRefGoogle Scholar
  10. 10.
    Ebers GC, Yee IM, Sadovnick AD, Duquette P: Conjugal multiple sclerosis: population-based prevalence and recurrence risks in offspring. Canadian Collaborative Study Group. Ann Neurol 2000, 48:927–931.PubMedCrossRefGoogle Scholar
  11. 11.
    Robertson NP, Clayton D, Fraser MB, et al.: Clinical concordance in sibling pairs with multiple sclerosis. Neurology 1996, 47:347–352.PubMedGoogle Scholar
  12. 12.
    Chataway SJ, Mander A, Robertson N, et al.: Multiple sclerosis in sibling pairs: an analysis of 250 families. J Neurol Neurosurg Psychiatry 2001, 71:757–761.PubMedCrossRefGoogle Scholar
  13. 13.
    Hupperts R, Broadley S, Mander A, et al.: Patterns of disease in concordant parent-child pairs with multiple sclerosis. Neurology 2001, 57:290–295.PubMedGoogle Scholar
  14. 14.
    Risch N: Linkage strategies for genetically complex traits. Am J Hum Genet 1990, 46:222–253.PubMedGoogle Scholar
  15. 15.
    Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 23:1516–1517.CrossRefGoogle Scholar
  16. 16.
    Risch NJ: Searching for genetic determinants in the new millennium. Nature 2000, 405:847–856.PubMedCrossRefGoogle Scholar
  17. 17.
    Becker KG, Simon RM, Bailey-Wilson JE: Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune disease. Proc Natl Acad Sci U S A 1998, 95:9979–9984.PubMedCrossRefGoogle Scholar
  18. 18.
    Rogers AE, Meehan J, Guilleminault C, et al.: HLA DR15 (DR2) and DQB1*0602 typing studies in 188 narcoleptic patients with cataplexy. Neurology 1997, 48:1550–1556.PubMedGoogle Scholar
  19. 19.
    Kruglyak L: Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet 1999, 22:139–144.PubMedCrossRefGoogle Scholar
  20. 20.
    Reich DE, Cargill M, Bolk S, et al.: Linkage disequilibrium in the human genome. Nature 2001, 411:199–204.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins A, Ennis S, Taillon-Miller P, et al.: Allelic association with SNPs: metrics, populations, and the linkage disequilibrium map. Hum Mutat 2001, 17:255–262.PubMedCrossRefGoogle Scholar
  22. 22.
    Eaves IA, Merriman TR, Barber RA, et al.: The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genet 2000, 25:320–323.PubMedCrossRefGoogle Scholar
  23. 23.
    Kendler KS, MacLean CJ, Ma Y, et al.: Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p and 8p in Irish high-density achizophreniua pedigrees. Am J Hum Genet 1999, 88:29–33.Google Scholar
  24. 24.
    Taillon-Miller P, Bauer-Sardina I, Saccone NL, et al.: Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nature Genet 2000, 25:324–328.PubMedCrossRefGoogle Scholar
  25. 25.
    Dunning AM, Durocher F, Healey CS, et al.: The extent of linkage disequilibrium in four populations with distinct demographic histories. Am J Hum Genet 2000, 67:1544–1554.PubMedCrossRefGoogle Scholar
  26. 26.
    Martin ER, Lai EH, Gilbert JR, et al.: SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000, 67:383–394.PubMedCrossRefGoogle Scholar
  27. 27.
    Daly MJ, Rioux JD, Schaffner SF, et al.: High-resolution haplotype structure in the human genome. Nature Genet 2001, 29:229–332. Article gives evidence for the stochastic nature of linkage disequilibrium in the human genome, providing a rational basis for the opportunities and limitations of association mapping.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeffreys AJ, Kauppi L, Neumann R: Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet 2001, 29:217–222.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson GC, Esposito L, Barratt BJ, et al.: Haplotype tagging for the identification of common disease genes. Nature Genet 2001, 29:233–237.PubMedCrossRefGoogle Scholar
  30. 30.
    Barcellos LF, Klitz W, Field LL, et al.: Association mapping of disease loci using a pooled DNA genomic screen. Am J Hum Genet 1997, 61:734–747.PubMedGoogle Scholar
  31. 31.
    Eisenberg D, Marcotte EM, Xenaris I, Yeats TO: Protein function in the post-genome era. Nature 2000, 405:823–826.PubMedCrossRefGoogle Scholar
  32. 32.
    Olerup O, Hillert J: HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991, 38:1–15.PubMedGoogle Scholar
  33. 33.
    Marrosu MG, Muntoni F, Murru MR, et al.: HLA-DQB1 genotype in Sardinian multiple sclerosis: evidence for a key role of DQB1. 0201 and DQB1.0302 alleles. Neurology 1992, 42:883–886.PubMedGoogle Scholar
  34. 34.
    Coraddu F, Reyes-Yanez MP, Aladro Y, et al.: HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998, 87:130–135.PubMedCrossRefGoogle Scholar
  35. 35.
    Saruhan-Direskeneli G, Esin S, Baykan-Kurt B, et al.: HLA-DR and -DQ associations with multiple sclerosis in Turkey. Hum Immunol 1997, 55:59–65.PubMedCrossRefGoogle Scholar
  36. 36.
    He B, Xu C, Yang B, et al.: Linkage and association analysis of genes encoding cytokines and myelin proteins in multiple sclerosis. J Neuroimmunol 1998, 86:13–19.PubMedCrossRefGoogle Scholar
  37. 37.
    Reboul J, Mertens C, Levillayer F, et al.: Cytokines in genetic susceptibility to multiple sclerosis: a candidate gene approach. J Neuroimmunol 2000, 102:107–112.PubMedCrossRefGoogle Scholar
  38. 38.
    Tienari P, Wikstrom J, Sajantila A, Palo J, Peltonen L: Genetic susceptibility to multiple sclerosis linked to myelin basic protein gene. Lancet 1992, 340:987–991.PubMedCrossRefGoogle Scholar
  39. 39.
    Tienari P, Kuokkanen S, Pastinen T, et al.: Golli-MBP gene in multiple sclerosis. J Neuroimmunol 1998, 81:158–167.PubMedCrossRefGoogle Scholar
  40. 40.
    Price SE, Sharpe G, Boots A, et al.: Role of myelin basic protein and proteolipid protein genes in multiple sclerosis: single strand conformation polymorphism analysis of the human sequences. Neuropathol Appl Neurobiol 1997, 23:457–467.PubMedCrossRefGoogle Scholar
  41. 41.
    Rodriguez D, Della Gaspera B, Zalc B, et al.: Identification of a Val 145 Ile substitution in the human myelin oligodendrocyte glycoprotein: lack of association with multiple sclerosis. Multiple Sclerosis 1997, 3:377–382.PubMedGoogle Scholar
  42. 42.
    Mertens C, Brassat D, Reboul J, et al.: A systematic study of oligodendrocyte growth factors as candidates for genetic susceptibility to multiple sclerosis. Neurology 1998, 51:748–753.PubMedGoogle Scholar
  43. 43.
    Sawcer S, Jones HB, Feakes R, et al.: A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet 1996, 13:464–468.PubMedCrossRefGoogle Scholar
  44. 44.
    Chataway J, Feakes R, Coraddu F, et al.: The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 1998, 121:1869–1887.PubMedCrossRefGoogle Scholar
  45. 45.
    Haines JL, Ter-Minassian M, Bazyk A, et al.: A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nature Genet 1996, 13:469–471.PubMedCrossRefGoogle Scholar
  46. 46.
    Ebers GC, Kukay K, Bulman D, et al.: A full genome search in multiple sclerosis. Nature Genet 1996, 13:472–476.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuokkanen S, Gschwend M, Rioux JD, et al.: Genomewide scan of multiple sclerosis in Finnish multiplex families. Am J Hum Genet 1997, 61:1379–1387.PubMedCrossRefGoogle Scholar
  48. 48.
    Broadley S, Sawcer S, D’Alfonso S, et al.: A genome screen for multiple sclerosis in Italian families. Gene Immun 2001, 2:205–210.CrossRefGoogle Scholar
  49. 49.
    Coraddu F, Sawcer S, D’Alfonso S, et al.: A genome screen for multiple sclerosis in Sardinian multiplex families. Eur J Hum Genet 2001, 9:621–626.PubMedCrossRefGoogle Scholar
  50. 50.
    Larsen F, Oturai A, Ryder LP, et al.: A. Linkage analysis of a candidate region in Scandinavian sib pairs with multiple sclerosis reveals linkage to chromosome 17q. Gene Immun 2000, 1:456–459.CrossRefGoogle Scholar
  51. 51.
    Dyment DA, Willer CJ, Scott B, et al.: Genetic susceptibility to MS: a second stage analysis in Canadian MS families. Neurogenetics 2001, 3:145–151.PubMedCrossRefGoogle Scholar
  52. 52.
    Akesson E, Oturai A, Berg J, et al.: A genome-wide screen for linkage in Nordic sib-pairs with multiple sclerosis. Gene Immun 2002, in press.Google Scholar
  53. 53.
    The Transatlantic Multiple Sclerosis Genetics Cooperative: A meta-analysis of genome screens in multiple sclerosis. J Multiple Sclerosis 2001, 7:3–11. Meta-analysis of the first three full-genome linkage screens in multiple sclerosis, providing the roadmap for further positional candidate studies.Google Scholar
  54. 54.
    Sawcer S, Meranian M, Setakis E, et al.: A whole genome screen for linkage disequilibrium in multiple sclerosis confirms disease associations with regions previously linked to susceptibility. Brain 2002, in press. First high-density, full-genome screen for association dependent on linkage disequilibrium in multiple sclerosis.Google Scholar
  55. 55.
    Harding AE, Sweeney MG, Brockington M, et al.: Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain 1992, 115:989–989.CrossRefGoogle Scholar
  56. 56.
    Kellar Wood H, Robertson N, Govan GG, et al.: Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol 1994, 36:109–112.CrossRefGoogle Scholar
  57. 57.
    Yamasaki K, Horiuchi I, Minohara M, et al.: HLA-DPB1*0501-associated opticospinal multiple sclerosis: clinical, neuroimaging and immunogenetic studies. Brain 1999, 122:1689–1696.PubMedCrossRefGoogle Scholar
  58. 58.
    Dean G, Bhighee AI, Bill PL, et al.: Multiple sclerosis in black South Africans and Zimbabweans. J Neurol Neurosurg Psychiatry 1994, 57:1064–1069.PubMedGoogle Scholar
  59. 59.
    Lucchinetti C, Bruck W, Parisi J, et al.: Heterogeneity for multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000, 47:707–717.PubMedCrossRefGoogle Scholar
  60. 60.
    Hillert J, Gronning M, Hyland H, Link H, Olerup O: Immunogenetic heterogeneity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1992, 55:887–890.PubMedCrossRefGoogle Scholar
  61. 61.
    Weinshenker BG, Santrach P, Bissonet AS, et al.: Major histocompatibility complex class II alleles and the course and outcome of MS: a population-based study. Neurology 1998, 51:742–747.PubMedGoogle Scholar
  62. 62.
    de la ConchaEG, Arroyo R, Crusius JB, et al.: Combined effect of HLA-DRB1*1501 and interleukin-1 receptor antagonist gene allele 2 in susceptibility to relapsing/remitting multiple sclerosis. J Neuroimmunol 1997, 80:172–178.PubMedCrossRefGoogle Scholar
  63. 63.
    Ma JJ, Nishimura M, Mine H, et al.: HLA-DRB1 and tumor necrosis factor gene polymorphisms in Japanese patients with multiple sclerosis. J Neuroimmunol 1998, 92:109–112.PubMedCrossRefGoogle Scholar
  64. 64.
    Coraddu F, Sawcer S, Feakes R, et al.: HLA typing in the United Kingdom multiple sclerosis genome screen. Neurogenetics 1999, 2:24–33.CrossRefGoogle Scholar
  65. 65.
    Masterman T, Ligers A, Olsson T, et al.: HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 2000, 48:211–219. First in a series of four papers showing a distinct clinical phenotype associated with the presence of DR15. It is probably correct given concordance of results in the three other series involving both sporadic and familial multiple sclerosis.PubMedCrossRefGoogle Scholar
  66. 66.
    Celius EG, Harbo HF, Egeland T, et al.: Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J Neurol Sci 2000, 178:132–135.PubMedCrossRefGoogle Scholar
  67. 67.
    Hensiek AE, Sawcer SJ, Feakes R, et al.: HLA-DR 15 is associated with female gender and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry 2002, 72:185–187.Google Scholar
  68. 68.
    Barcellos LF, Oksenberg JR, for The Multiple Sclerosis Genetics Group: Genetic basis for clinical expression in multiple sclerosis. Brain 2002, 125:150–158.PubMedCrossRefGoogle Scholar
  69. 69.
    Chataway J, Sawcer S, Coraddu F, et al.: Allelic variants of the spinocerebellar ataxia genes contribute to multiple sclerosis susceptibility. Neurogenetics 1999, 2:91–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Broadley S, Deans J, Sawcer SJ, et al.: Autoimmune disease in first degree relatives of patients with multiple sclerosis in the United Kingdom. Brain 2000, 123:1102–1111.PubMedCrossRefGoogle Scholar
  71. 71.
    Reed P, Cucca F, Jenkins S, et al.: Evidence for a type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-q11. Hum Molec Genet 1997, 6:1011–1016.PubMedCrossRefGoogle Scholar
  72. 72.
    Merriman A, Cordell HJ, Eaves IA, et al.: Suggestive evidence for association of human chromosome 18q12-q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases. Diabetes 2001, 50:184–194.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2002

Authors and Affiliations

  • Alastair Compston
    • 1
  • Stephen Sawcer
    • 1
  1. 1.University of Cambridge Neurology Unit, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations