Current Infectious Disease Reports

, Volume 1, Issue 5, pp 497–503

Viral load monitoring in HIV Infection

  • Mark Holodniy
Article

Abstract

Measurement of HIV-1 viral load is now an accepted part of clinical practice for the determination of clinical prognosis and antiretroviral effectiveness in HIV infection. Consensus guidelines have been published on the appropriate use of this testing. Furthermore, recent advances in molecular technology have improved the sensitivity and reproducibility of viral load assays, and these improved assays have provided new insight into the pathogenesis of HIV disease. This article reviews new issues affecting viral load quantification, including viral subtypes, sex, compartmental differences, and other covariables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Carpenter CCJ, Rischl MA, Hammer SM, et al.: Antiretroviral therapy for HIV infection in 1998—updated recommendations of the International AIDS Society. JAMA 1998, 351:723–724.Google Scholar
  2. 2.
    Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Department of Health and Human Services and Henry J Kaiser Family Foundation. MMWR Morb Mortal Wkly Rep 1998, 47(RR-5):43-82. This paper reviews viral load levels, risk for clinical progression, and reasons to institute or change therapy.Google Scholar
  3. 3.
    Simons F, Sjeps M, DeLaat C, et al.: An ultrasensitive NucliSens ®, HIV-1 QT procedure is able to reliably detect HIV plasma viral loads down to 10 copies/ml [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:148.Google Scholar
  4. 4.
    Schiltz H, Gratiano T, Glock J, et al.: Sensitivity, specificity, linear range and quantification evaluation of the Digene Hybrid Capture®, II HIV RNA v1.0 test with an improved plasma specimen preparation method [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:150.Google Scholar
  5. 5.
    Swanson P, Harris B, Devare S, Hackett J: Efficient quantification of HIV-1 group M and group O by the Abbot L Cx HIV RNA quantitative assay [poster]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:716.Google Scholar
  6. 6.
    Bodrug S, Sanders M, Bixby T, et al.: Robustness of the Gen-Probe HIV-1 viral load assay in the presence of potential interferents [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:151.Google Scholar
  7. 7.
    Prud’homme IT, Kim JE, Pilon RG, et al.: Amplicor HIV monitor, NASBA HIV-1 RNA QT and quantiplex HIV RNA version 2.0 viral load assays: a Canadian evaluation. J Clin Virol 1998, 11:189–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Nolte FS, Boysza J, Thurmond C, Clark WS, Lennox JL: Clinical comparison of an enhanced-sensitivity branched-DNA assay and reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 1998, 36:716–720.PubMedGoogle Scholar
  9. 9.
    Holguin A, de Mendoza C, Soriano V: Comparison of three different commercial methods for measuring plasma viraemia in patients infected with non-B HIV-1 subtypes. Eur J Clin Microbiol Infect Dis 1999, 18:256–259.PubMedCrossRefGoogle Scholar
  10. 10.
    Parekh B, Phillips S, Granade TC, et al.: Impact of HIV type 1 subtype variation on viral RNA quantitation. AIDS Res Hum Retroviruses 1999, 15:133–142.PubMedCrossRefGoogle Scholar
  11. 11.
    Triques K, Coste J, Perret JL, et al.: Efficiencies of four versions of the AMPLICOR HIV-1 MONITOR test for quantification of different subtypes of human immunodeficiency virus type 1. J Clin Microbiol 1999, 37:110–116.PubMedGoogle Scholar
  12. 12.
    Ginocchio CC, Wang XP, Kaplan MH, et al.: Effects of specimen collection, processing, and storage conditions on stability of human immunodeficiency virus type 1 RNA levels in plasma. J Clin Microbiol 1997, 35:2886–2893.PubMedGoogle Scholar
  13. 13.
    Kirstein LM, Mellors JW, Rinaldo CR, et al.: Effects of anticoagulant, processing delay, and assay method (branched DNA versus reverse transcriptase PCR) on measurement of human immunodeficiency virus type 1 RNA levels in plasma. J Clin Microbiol 1999, 37:2428–2433.PubMedGoogle Scholar
  14. 14.
    Vandamme AM, Van Lethem K, Schmit JC, et al.: Long-term stability of human immunodeficiency virus viral load and infectivity in whole blood. Eur J Clin Invest 1999, 29:445–452.PubMedCrossRefGoogle Scholar
  15. 15.
    Murphy DG, Gonin P, Fauvel M: Reproducibility and performance of the second-generation branched-DNA assay in routine quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 1999, 37:812–814.PubMedGoogle Scholar
  16. 16.
    Lin HJ, Pedneault L, Hollinger FB: Intra-assay performance characteristics of five assays for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 1998, 36:835–839.PubMedGoogle Scholar
  17. 17.
    Deeks SG, Coleman RL, White R, et al.: Variance of plasma human immunodeficiency virus type 1 RNA levels measured by branched DNA within and between days. J Infect Dis 1997, 176:514–517.PubMedGoogle Scholar
  18. 18.
    Bartlett JA, DeMasi R, Dawson D, Hill A: Variability in repeated consecutive measurements of plasma human immunodeficiency virus RNA in persons receiving stable nuceloside reverse transcriptase inhibitor therapy or no treatment. J Infect Dis 1998, 178:1803–1805.PubMedCrossRefGoogle Scholar
  19. 19.
    Alonso R, Garcia de Viedma D, Rodriguez-Creixems M, Bouza E: Effect of potentially interfering substances on the measurement of HIV-1 viral load by the bDNA assay. J Virol Methods 1999, 78:149–152.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufmann GR, Cunningham P, Kelleher AD, et al.: Patterns of viral dynamics during primary human immunodeficiency virus type 1 infection. J Infect Dis 1998, 178:1812–1815.PubMedCrossRefGoogle Scholar
  21. 21.
    Rich JD, Merriman NA, Mylonokis E, et al.: Misdiagnosis of HIV infection by HIV-1 plasma viral load testing: a case series. Ann Intern Med 1999, 130:37–39.PubMedGoogle Scholar
  22. 22.
    Katzenstein TL, Pederson C, Nielsen C, et al.: Longitudinal serum HIV RNA quantification: correlation to viral phenotype at seroconversion and clinical outcome. AIDS 1996, 10:167.PubMedGoogle Scholar
  23. 23.
    Henrard DR, Daar E, Farzadegan H, et al.: Virologic and immunologic characterizations of symptomatic and asymptomatic primary HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovir 1995, 9:305.Google Scholar
  24. 24.
    Mellors JW, Munoz A, Giorgi JV, et al.: Plasma viral load and CD4 lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997, 126:946–954. This paper was the first to establish the prognostic significance of viral load quantitation after acute infection.PubMedGoogle Scholar
  25. 25.
    Lefrere J-J, Mariotti M, Morand-Jourbert L, et al.: Plasma human immunodeficiency virus RNA below 40 copies/mL is rare in untreated persons even in the first years of infection. J Infect Dis 1999, 180:526–529.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Brien TR, Rosenberg PS, Yellin F, et al.: Longitudinal HIV-1 RNA levels in a cohort of homosexual men. J Acquir Immune Defic Syndr Hum Retrovir 1998, 18:155–161.Google Scholar
  27. 27.
    Vidal C, Garcia F, Rameu J, et al.: Lack of evidence of a stable viral load set-point in early stage asymptomatic patients with chronic HIV-1 infection. AIDS 1998, 12:1285–1289.PubMedCrossRefGoogle Scholar
  28. 28.
    Learmont JC, Geczy AF, Mills J, et al.: Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. N Engl J Med 1999, 340:1715–1722.PubMedCrossRefGoogle Scholar
  29. 29.
    Giorgi JV, Hultin LE, McKeating JA, et al.: Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999, 179:859–870.PubMedCrossRefGoogle Scholar
  30. 30.
    Ogg GS, Jin X, Bonhoeffer S, et al.: Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998, 279:2103–2106.PubMedCrossRefGoogle Scholar
  31. 31.
    Weiss L, Si-Mohamed A, Giral P, et al.: Plasma levels of monocyte chemoattractant protein-1 but not those of macrophage inhibitory protein-1 alpha and RANTES correlate with virus load in human immunodeficiency virus infection. J Infect Dis 1997, 176:1621–1624.PubMedCrossRefGoogle Scholar
  32. 32.
    Salazar-Gonzalez JF, Martinez-Maza O, Aziz N, et al.: Relationship of plasma HIV-RNA levels and levels of TNF-alpha and immune activation products in HIV infection. Clin Immunol Immunopathol 1997, 84:36–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Tsoukas C, Reddy DA, on behalf of the NV15355 Study Group: Predictive value of response at 12 and 24 weeks for durability of response in a study of the soft gelatin capsule formulation of saquinavir (SQV-SGC) plus 2 nucleosides in treatmentnaïve HIV-1-positive patients [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:165.Google Scholar
  34. 34.
    Kempf DJ, Rode RA, Xu Y, et al.: The duration of viral suppression during protease inhibitor therapy for HIV-1 infection is predicted by plasma HIV-1 RNA at the nadir. AIDS 1998, 12:F9–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Raboud JM, Montaner JS, Conway B, et al.: Suppression of plasma viral load below 20 copies/ml is required to achieve a long-term response to therapy. AIDS 1998, 12:1619–1624. This paper shows that the achievement of undetectable viral load levels after the initiation of HAART is a condition for a virologically successful treatment regimen.PubMedCrossRefGoogle Scholar
  36. 36.
    Katzenstein DA, Hammer SM, Hughes MD, et al.: The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. N Engl J Med 1996, 335:1091–1098. This is one of the only papers to show the relationship of baseline viral load level and reduction in viral load after 8 weeks of therapy, with clinical outcome.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Brien WA, Hartigan PM, Daar ES, et al.: Changes in plasma HIV RNA levels and CD4+ lymphocyte counts predict both response to antiretroviral therapy and therapeutic failure. Ann Intern Med 1997, 126:939–945.PubMedGoogle Scholar
  38. 38.
    Zhang L, Ramratnam B, Tenner-Racz K, et al.: Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999, 340:1605–1613.PubMedCrossRefGoogle Scholar
  39. 39.
    Hockett RD, Kilby JM, Derdeyn CA, et al.: Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J Exp Med 1999, 189:1545–1554.PubMedCrossRefGoogle Scholar
  40. 40.
    Harrigan PR, Whaley M, Montaner JS: Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy. AIDS 1999, 13:F59-F62.PubMedCrossRefGoogle Scholar
  41. 41.
    de Jong MD, de Boer RJ, de Wolf F, et al.: Overshoot of HIV-1 viraemia after early discontinuation of antiretroviral treatment. AIDS 1997, 11:F79-F84.PubMedCrossRefGoogle Scholar
  42. 42.
    Neumann AU, Tubiana R, Calvez V, et al.: HIV-1 rebound during interruption of highly active antiretroviral therapy has no deleterious effect on reinitiated treatment. Comet Study Group. AIDS 1999, 13:677–683.PubMedCrossRefGoogle Scholar
  43. 43.
    Montaner JS, Reiss P, Cooper D, et al.: A randomized, doubleblind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS trial. Italy, The Netherlands, Canada and Australia Study. JAMA 1998, 279:930–937.PubMedCrossRefGoogle Scholar
  44. 44.
    Hecht FM, Grant RM, Petropaulos CJ, et al.: Sexual transmission of an HIV-1 variant resistant to multiple reversetranscriptase and protease inhibitors. N Engl J Med 1998, 339:307–311.PubMedCrossRefGoogle Scholar
  45. 45.
    Durant J, Clevenbergh P, Halfon P, et al.: Drug-resistance genotyping in HIV-1 therapy: the VIRADAPT randomised controlled trial. Lancet 1999, 353:2195–2199.PubMedCrossRefGoogle Scholar
  46. 46.
    Piketty C, Castile P, Belec L, et al.: Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease. AIDS 1998, 12:745–750.PubMedCrossRefGoogle Scholar
  47. 47.
    Farzadegan H, Hoover DR, Astemborski J, et al.: Sex differences in HIV-1 viral load and progression to AIDS. Lancet 1998, 352:1510–1514.PubMedCrossRefGoogle Scholar
  48. 48.
    Moroni M for ICONA: Sex differences in HIV-1 viral load and progression to AIDS. Lancet 1999, 353:589–590.CrossRefGoogle Scholar
  49. 49.
    Ledergerber B, Egger M, Opravil M, et al.: Clinical progression and virological failure on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study. Swiss HIV Cohort Study. Lancet 1999, 353:863–868.PubMedCrossRefGoogle Scholar
  50. 50.
    Anastos K, Gange SJ, Lau B, et al.: Gender specific differences in quantitative HIV-1 RNA levels [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:274.Google Scholar
  51. 51.
    Brown AE, Malone JD, Zhou SY, et al.: Human immunodeficiency virus RNA levels in US adults: a comparison based upon race and ethnicity. J Infect Dis 1997, 176:794–797.PubMedGoogle Scholar
  52. 52.
    Bush CE, Donavan RM, Markowitz N, et al.: Gender is not a factor in serum human immunodeficiency virus type 1 RNA levels in patients with viremia. J Clin Microbiol 1996, 34:970–972.PubMedGoogle Scholar
  53. 53.
    Uvin SC, Caliendo AM: Cervicovaginal human immunodeficiency virus secretion and plasma viral load in human immunodeficiency virus-seropositive women. Obstet Gynecol 1997, 90:739–743.PubMedCrossRefGoogle Scholar
  54. 54.
    Hart CE, Lennox JL, Pratt-Palmore M, et al.: Correlation of human immunodeficiency virus type 1 RNA levels in blood and the female genital tract. J Infect Dis 1999, 179:871–882.PubMedCrossRefGoogle Scholar
  55. 55.
    Reichelderfer P, Coombs R, Wright D, et al.: Variation in genital tract shedding of HIV RNA with menstrual cycle [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:223.Google Scholar
  56. 56.
    Vancott TC, Bush T, Lennox JL, et al.: Correlations of HIV-1 viral loads in plasma and female genital tract secretions with systemic and mucosal immune responses [abstract]. In 6th Conference on Retroviruses and Opportunistic Infections. Chicago, 1999:224.Google Scholar
  57. 57.
    Burns DN, Landesman S, Minkoff H, et al.: The influence of pregnancy of human immunodeficiency virus type 1 infection: antepartum and postpartum changes in human immunodeficiency virus type 1 viral load. Am J Obstet Gynecol 1998, 178:355–359.PubMedCrossRefGoogle Scholar
  58. 58.
    Garcia PM, Kalish LA, Pitt J, et al.: Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. N Engl J Med 1999, 341:394–402. This paper confirms the conclusions of previous studies showing that maternal viral load level during pregnancy is significantly correlated with risk for perinatal transmission of HIV.PubMedCrossRefGoogle Scholar
  59. 59.
    Mofenson LM, Lambert JS, Steihm ER, et al.: Risk factors for perinatal transmission of human immunodeficiency virus type 1 in women treated with zidovudine. N Engl J Med 1999, 341:385–393.PubMedCrossRefGoogle Scholar
  60. 60.
    Contopoulos-Ioannidis DG, Ioannidis JPA: Maternal cell-free viremia in the natural history of perinatal HIV-1 transmission. J Acquir Immune Defic Syndr Hum Retrovir 1998, 18:126–135.Google Scholar
  61. 61.
    Semba RD, Kumwenda N, Hoover DR, et al.: Human immunodeficiency virus load in breast milk, mastitis, and mother-tochild transmission of human immunodeficiency virus type 1. J Infect Dis 1999, 180:93–98.PubMedCrossRefGoogle Scholar
  62. 62.
    Dickover RE, Dillon M, Leung KM, et al.: Early prognostic indicators in primary perinatal human immunodeficiency virus type 1 infection: importance of viral RNA and the timing of transmission on long-term outcome. J Infect Dis 1998, 178:375–387.PubMedGoogle Scholar
  63. 63.
    Shearer WT, Quinn TC, LaRussa P, et al.: Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N Engl J Med 1997, 336:1337–1342.PubMedCrossRefGoogle Scholar
  64. 64.
    Valentine ME, Jackson CR, Vavro D, et al.: Evaluation of surrogate markers and clinical outcomes in two-year follow-up of eighty-six human immunodeficiency virus-infected pediatric patients. Pediatr Infect Dis J 1998, 17:18–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Palumbo PE, Raskino C, Fiscus S, et al.: Predictive value of quantitative plasma HIV RNA and CD4+ lymphocyte count in HIV-infected infants and children. JAMA 1998, 279:756–761.PubMedCrossRefGoogle Scholar
  66. 66.
    Paediatric European Network for Treatment of AIDS (PENTA): HIV-1 viral load and CD4 cell count in untreated children with vertically acquired asymptomatic or mild disease. AIDS 1998, 12:F1-F8.CrossRefGoogle Scholar
  67. 67.
    Tetali S, Bakshi S, Than S, et al.: Plasma virus load evaluation in relation to disease progression in HIV-infected children. AIDS Res Hum Retroviruses 1998, 14:571–577.PubMedGoogle Scholar
  68. 68.
    Purswani M, Johann-Liang R, Cervia J, Noel GJ: Effect of changing antiretroviral therapy on human immunodeficiency virus viral load: experience with fifty-four perinatally infected children. Pediatr Infect Dis J 1999, 18:512–516.PubMedCrossRefGoogle Scholar
  69. 69.
    McArthur JC, McClernon DR, Cronin MF, et al.: Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 1997, 42:689–698.PubMedCrossRefGoogle Scholar
  70. 70.
    Di Stefano M, Monno L, Fiore JR, et al.: Neurological disorders during HIV-1 infection correlate with viral load in cerebrospinal fluid but not with virus phenotype. AIDS 1998, 12:737–743.PubMedCrossRefGoogle Scholar
  71. 71.
    Hengge UR, Brockmeyer NH, Esser S, et al.: HIV-1 RNA levels in cerebrospinal fluid and plasma correlate with AIDS dementia. AIDS 1998, 27:818–820.Google Scholar
  72. 72.
    Childs EA, Lyles RH, Selnes OA, et al.: Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology 1999, 52:607–613.PubMedGoogle Scholar
  73. 73.
    Lazarini F, Seilhean D, Rosenblum O, et al.: Human immunodeficiency virus type 1 DNA and RNA load in brains of demented and nondemented patients with acquired immunodeficiency syndrome. J Neurovirol 1997, 3:299–303.PubMedCrossRefGoogle Scholar
  74. 74.
    Gisslen M, Hagberg L, Fuchs D, et al.: Cerebrospinal fluid viral load in HIV-1-infected patients without antiretroviral treatment: a longitudinal study. J Acquir Immune Defic Syndr Hum Retrovir 1998, 17:291–295.Google Scholar
  75. 75.
    Eggers CC, van Lunzen J, Buhk T, Stellbrink HJ: HIV infection of the central nervous system is characterized by rapid turnover of viral RNA in cerebrospinal fluid. J Acquir Immune Defic Syndr Hum Retrovir 1999, 20:259–264.Google Scholar
  76. 76.
    Iftimovici E, Rabian C, Burgard M, et al.: Longitudinal comparison of HIV-1 RNA burden in plasma and cerebrospinal fluid in two patients starting triple combination antiretroviral therapy. AIDS 1998, 12: 535–537.PubMedGoogle Scholar
  77. 77.
    Gupta P, Mellors J, Kingsley L, et al.: High viral load in semen of human immunodeficiency virus type 1-infected men at all stages of disease and its reduction by therapy with protease and nonnucleoside reverse transcriptase inhibitors. J Virol 1997, 71:6271–6275.PubMedGoogle Scholar
  78. 78.
    Vernazza PL, Gilliam BL, Flepp M, et al.: Effect of antiviral treatment on the shedding of HIV-1 in semen. AIDS 1997, 11:1249–1254.PubMedCrossRefGoogle Scholar
  79. 79.
    Melvin AJ, Tamura GS, House JK, et al.: Lack of detection of human immunodeficiency virus type 1 in the saliva of infected children and adolescents. Arch Pediatr Adolesc Med 1997, 151:228–232.PubMedGoogle Scholar
  80. 80.
    Bagasra O, Steiner RM, Ballas SK, et al.: Viral burden and disease progression in HIV-1-infected patients with sickle cell anemia. Am J Hematol 1998, 59:199–207.PubMedCrossRefGoogle Scholar
  81. 81.
    Ragni MV: Progression of HIV in haemophilia. Haemophilia 1998, 4:601.PubMedCrossRefGoogle Scholar
  82. 82.
    Groopman JE: Impact of transfusion on viral load in human immunodeficiency virus infection. Semin Hematol 1997, 34 (3 suppl 2):27–33.PubMedGoogle Scholar
  83. 83.
    Ahuja TS, Niaz N, Velasco A, et al.: Effect of hemodialysis and antiretroviral therapy on plasma viral load in HIV-1 infected hemodialysis patients. Clin Nephrol 1999, 51:40–44.PubMedGoogle Scholar
  84. 84.
    Gelfand JM, Rudikoff D, Lebwhol M, Klotman ME: Effect of UV-B phototherapy on plasma HIV type 1 RNA viral level: a self-controlled prospective study. Arch Dermatol 1998, 134:940–945.PubMedCrossRefGoogle Scholar
  85. 85.
    Bernard NF, Chernoff DN, Tsoukas CM: Effect of splenectomy on T-cell subsets and plasma HIV viral titers in HIV-infected patients. J Hum Virol 1998, 1:338–345.PubMedGoogle Scholar
  86. 86.
    Kilby JM, Tabereaux PB, Mulanovich V, et al.: Effects of tapering doses of oral prednisone on viral load among HIV-infected patients with unexplained weight loss. AIDS Res Hum Retroviruses 1997, 13:1533–1537.PubMedGoogle Scholar
  87. 87.
    Kovacs JA, Baseler M, Dewar RJ, et al.: Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 1995, 332:567–575.PubMedCrossRefGoogle Scholar
  88. 88.
    Ortigao-de-Sampaio MB, Shattock RJ, Hayes P, et al.: Increase in plasma viral load after oral cholera immunization of HIV-infected subjects. AIDS 1998, 12:F145-F150.PubMedCrossRefGoogle Scholar
  89. 89.
    Barcia F, Vidal C, Gatell JM, et al.: Changes in HIV-1 RNA viral load following tuberculin skin test. J Acquir Immune Defic Syndr Hum Retrovir 1998, 18:398–399.Google Scholar
  90. 90.
    Fuller JD, Craven DE, Steger KA, et al.: Influenza vaccination of human immunodeficiency virus (HIV)-infected adults: impact on plasma levels of HIV type 1 RNA and determinants of antibody response. Clin Infect Dis 1999, 28:541–547.PubMedGoogle Scholar
  91. 91.
    Kovacs JA, Vogel S, Albert JM, et al.: Controlled trial of interleukin-2 infusions in patients infected with human immunodeficiency virus. N Engl J Med 1996, 335:1350–1356.PubMedCrossRefGoogle Scholar
  92. 92.
    Donovan RM, Moore E, Bush CE, et al.: Changes in plasma HIV RNA levels and CD4 cell counts after vaccination of pediatric patients. AIDS 1997, 11:1054–1056.PubMedGoogle Scholar
  93. 93.
    Zhang H, Flynn C, Nelson KE, et al.: HIV/HTLV-II coinfection and CD4+ cell count controlling for plasma HIV viral load in injection drug users in Baltimore. J Acquir Immune Defic Syndr Hum Retrovir 1998, 18:397.Google Scholar
  94. 94.
    Harrison LH, Quinn TC, Schechter M: Human T cell lymphotropic virus type I does not increase human immunodeficiency virus viral load in vivo. J Infect Dis 1997, 175:438–440.PubMedGoogle Scholar
  95. 95.
    Luque AE, Demeter LM, Reichman R: Association of human papillomavirus infection and disease and magnitude of human immunodeficiency virus type 1 (HIV-1) RNA plasma level among women with HIV-1 infection. J Infect Dis 1999, 179:1405–1409.PubMedCrossRefGoogle Scholar
  96. 96.
    Gottfredsson M, Cox GM, Indridason OS, et al.: Association of plasma levels of human immunodeficiency virus type 1 RNA and oropharyngeal candida colonization. J Infect Dis 1999, 180:534–537.PubMedCrossRefGoogle Scholar
  97. 97.
    Min J, Katzenstein DA: Detection of Kaposi’s sarcoma-associated herpes virus in peripheral blood cells in human immunodeficiency virus infection: association with Kaposi’s sarcoma, CD4 cell count, and HIV RNA levels. AIDS Res Hum Retroviruses 1999, 15:51–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Emery VC, Atkins MC, Bowen EF, et al.: Interactions between beta-herpes viruses and human immunodeficiency virus in vivo: evidence for increased human immunodeficiency viral load in the presence of human herpes virus 6. J Med Virol 1999, 57:278–282.PubMedCrossRefGoogle Scholar
  99. 99.
    Sulkowski MS, Chaisson RE, Karp CL, et al.: The effect of acute infectious illnesses on plasma human immunodeficiency virus (HIV) type 1 load and the expression of serologic markers of immune activation among HIV-infected adults. J Infect Dis 1998, 178:1642–1648.PubMedCrossRefGoogle Scholar
  100. 100.
    Marchisio P, Esposito S, Zanchetta N, et al.: Effect of superimposed infections on viral replication in human immunodeficiency virus type 1-infected children. Pediatr Infect Dis J 1998, 17:755–757.PubMedCrossRefGoogle Scholar
  101. 101.
    Sulkowski MS, Chaisson RE, Karp CL, et al.: The effect of acute infectious illnesses on plasma human immunodeficiency virus (HIV) type 1 load and the expression of serologic markers of immune activation among HIV-infected adults. J Infect Dis 1998, 178:1642–1648.PubMedCrossRefGoogle Scholar
  102. 102.
    Hoffman IF, Jere CS, Taylor TE, et al.: The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS 1999, 13:487–494.PubMedCrossRefGoogle Scholar
  103. 103.
    Lyles RH, Chu C, Mellors JW, et al.: Prognostic value of plasma HIV RNA in the natural history of Pneumocystis carinii pneumonia, cytomegalovirus and Mycobacterium avium complex. Multicenter AIDS Cohort Study. AIDS 1999, 13:341–349.PubMedCrossRefGoogle Scholar
  104. 104.
    Chambost H, Gerolami V, Halfon P, et al.: Persistent hepatitis C virus RNA replication in haemophiliacs: role of co-infection with human immunodeficiency virus. Br J Haematol 1995, 91:703–707.PubMedGoogle Scholar
  105. 105.
    Rockstroh JK, Theisen A, Kaiser R, et al.: Antiretroviral triple therapy decreases HIV viral load but does not alter hepatitis C virus (HCV) serum levels in HIV-HCV-co-infected haemophiliacs. AIDS 1998, 12:829–830.PubMedGoogle Scholar

Copyright information

© Current Science Inc 1999

Authors and Affiliations

  • Mark Holodniy
    • 1
  1. 1.AIDS Research CenterVeterans Affairs Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations