Clostridium difficile Infection (CDI) in Solid Organ and Hematopoietic Stem Cell Transplant Recipients

Transplant and Oncology (M Ison, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Transplant and Oncology

Abstract

Patients undergoing solid organ and stem cell transplantation are at increased risk of Clostridium difficile infection (CDI) compared with nontransplant patients. CDI may be associated with significant morbidity in this population including prolonged hospitalization, increased hospital charges, and complications in the transplanted organ. A combination of host factors, including both B-cell and T-cell immunosuppression, in addition to traditional risk factors for CDI such as broad-spectrum antibacterial exposure, are likely to contribute to the elevated risk in this population. This article addresses the current epidemiology and risk factors for CDI in transplant recipients, the downstream complications following this infection, and current management strategies, with an emphasis on novel approaches for primary and recurrent disease including fecal microbiota transplantation.

Keywords

Clostridium difficile infection Diarrhea Colitis Solid-organ transplant Hematopoietic stem cell transplant 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Centers for Disease Control and Prevention (CDC). Vital signs: preventing Clostridium difficile infections. MMWR Morb Mortal Wkly Rep. 2012;61(9):157–62.Google Scholar
  2. 2.
    Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention (CDC). Emerging infections program - Healthcare-associated infections projects. www.cdc.gov/hai/eip. Accessed 14 May 2014.
  4. 4.
    Ziring D, Tran R, Edelstein S, et al. Infectious enteritis after intestinal transplantation: incidence, timing, and outcome. Transplantation. 2005;79(6):702–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Trifilio SM, Pi J, Mehta J. Changing epidemiology of Clostridium difficile-associated disease during stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(3):405–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Alonso CD, Treadway SB, Hanna DB, et al. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2012;54(8):1053–63.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chopra T, Chandrasekar P, Salimnia H, et al. Recent epidemiology of Clostridium difficile infection during hematopoietic stem cell transplantation. Clin Transplant. 2011;25(1):E82–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Boutros M, Al-Shaibi M, Chan G, et al. Clostridium difficile colitis: increasing incidence, risk factors, and outcomes in solid organ transplant recipients. Transplantation. 2012;93(10):1051–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee JT, Kelly RF, Hertz MI, et al. Clostridium difficile infection increases mortality risk in lung transplant recipients. J Heart Lung Transplant. 2013;32(10):1020–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353(23):2442–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Pepin J, Valiquette L, Alary ME, et al. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ. 2004;171(5):466–72.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rosen JB, Schecter MG, Heinle JS, et al. Clostridium difficile colitis in children following lung transplantation. Pediatr Transplant. 2010;14(5):651–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Bajaj JS, Ananthakrishnan AN, Hafeezullah M, et al. Clostridium difficile is associated with poor outcomes in patients with cirrhosis: a national and tertiary center perspective. Am J Gastroenterol. 2010;105(1):106–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Stelzmueller I, Goegele H, Biebl M, et al. Clostridium difficile colitis in solid organ transplantation – a single-center experience. Dig Dis Sci. 2007;52(11):3231–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Patriarchi F, Rolla M, Maccioni F, et al. Clostridium difficile-related pancolitis in lung-transplanted patients with cystic fibrosis. Clin Transplant. 2011;25(1):E46–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee M, Shelton AA, Concepcion WL, et al. Fulminant Clostridium difficile colitis in a post-liver transplant patient. Dig Dis Sci. 2010;55(9):2459–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Dallal RM, Harbrecht BG, Boujoukas AJ, et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg. 2002;235(3):363–72.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55.PubMedCrossRefGoogle Scholar
  19. 19.
    US Food and Drug Administration (FDA). Nucleic acid based tests. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm#microbial. Accessed 14 May 2014.
  20. 20.
    Jain T, Croswell C, Banavasi H, et al. Prospective evaluation of toxigenic and non-toxigenic strains of Clostridium difficile colonization and infection among allogenic hematopoietic stem cell transplant recipients, 2010-2012. ID week 2013; 2–6 October 2013; San Francisco, CA.Google Scholar
  21. 21.•
    Kamboj M, Babady NE, Marsh JW, et al. Estimating risk of C. difficile transmission from PCR positive but cytotoxin negative cases. PLoS One. 2014;9(2):e88262. Using genetic methods, this article addresses the risk of transmission of C. difficile from cytotoxin-negative/PCR-positive stool samples. The authors found that transmission occurs with greater frequency in cytotoxin-positive/PCR-positive samples, but that cytotoxin-negative/PCR-positive samples do contribute to hospital-based transmission risks. PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kinnebrew MA, Lee YJ, Jenq RR, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS One. 2014;9(3):e90158.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kamboj M, Son C, Cantu S, et al. Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: a C3IC network report. Infect Control Hosp Epidemiol. 2012;33(11):1162–5.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Fong KS, Fatica C, Hall G, et al. Impact of PCR testing for Clostridium difficile on incident rates and potential on public reporting: is the playing field level? Infect Control Hosp Epidemiol. 2011;32(9):932–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Longtin Y, Trottier S, Brochu G, et al. Impact of the type of diagnostic assay on Clostridium difficile infection and complication rates in a mandatory reporting program. Clin Infect Dis. 2013;56(1):67–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Bauer MP, Kuijper EJ, van Dissel JT. European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2009;15(12):1067–79.PubMedCrossRefGoogle Scholar
  27. 27.
    Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–98. quiz 499.PubMedCrossRefGoogle Scholar
  28. 28.
    Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis. 2007;45(3):302–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Belmares J, Gerding DN, Parada JP, et al. Outcome of metronidazole therapy for Clostridium difficile disease and correlation with a scoring system. J Infect. 2007;55(6):495–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Dubberke ER, Sadhu J, Gatti R, et al. Severity of Clostridium difficile-associated disease (CDAD) in allogeneic stem cell transplant recipients: evaluation of a CDAD severity grading system. Infect Control Hosp Epidemiol. 2007;28(2):208–11.PubMedCrossRefGoogle Scholar
  31. 31.•
    Wang MS, Evans CT, Rodriguez T, et al. Clostridium difficile infection and limitations of markers for severity in patients with hematologic malignancy. Infect Control Hosp Epidemiol. 2013;34(2):127–32. This study compared three severity grading methods and found that traditional severity scores for CDI may underestimate severity of illness in immunosuppressed patients. PubMedCrossRefGoogle Scholar
  32. 32.
    See I, Mu Y, Cohen J, et al. NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis. 2014;58(10):1394–400.PubMedCrossRefGoogle Scholar
  33. 33.
    Walker AS, Eyre DW, Wyllie DH, et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 2012;9(2):e1001172.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Eyre DW, Cule ML, Wilson DJ, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369(13):1195–205.PubMedCrossRefGoogle Scholar
  35. 35.
    Curry SR, Muto CA, Schlackman JL, et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis. 2013;57(8):1094–102.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Dionne LL, Raymond F, Corbeil J, Longtin J, Gervais P, Longtin Y. Correlation between Clostridium difficile bacterial load, commercial real-time PCR cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay. J Clin Microbiol. 2013;51(11):3624–30.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Len O, Rodriguez-Pardo D, Gavalda J, et al. Outcome of Clostridium difficile-associated disease in solid organ transplant recipients: a prospective and multicentre cohort study. Transpl Int. 2012;25(12):1275–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Pant C, Anderson MP, O'Connor JA, et al. Association of Clostridium difficile infection with outcomes of hospitalized solid organ transplant recipients: results from the 2009 Nationwide Inpatient Sample database. Transpl Infect Dis. 2012;14(5):540–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitu-Pretorian OM, Forgacs B, Qumruddin A, et al. Outcomes of patients who develop symptomatic Clostridium difficile infection after solid organ transplantation. Transplant Proc. 2010;42(7):2631–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Hashimoto M, Sugawara Y, Tamura S, et al. Clostridium difficile-associated diarrhea after living donor liver transplantation. World J Gastroenterol. 2007;13(14):2072–6.PubMedGoogle Scholar
  41. 41.
    Ali M, Ananthakrishnan AN, Ahmad S, et al. Clostridium difficile infection in hospitalized liver transplant patients: a nationwide analysis. Liver Transpl. 2012;18(8):972–8.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Albright JB, Bonatti H, Mendez J, et al. Early and late onset Clostridium difficile-associated colitis following liver transplantation. Transpl Int. 2007;20(10):856–66.PubMedCrossRefGoogle Scholar
  43. 43.
    de Marie S. Diseases and drug-related interventions affecting host defence. Eur J Clin Microbiol Infect Dis. 1993;12 Suppl 1:S36–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Theunissen C, Knoop C, Nonhoff C, et al. Clostridium difficile colitis in cystic fibrosis patients with and without lung transplantation. Transpl Infect Dis. 2008;10(4):240–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Gunderson CC, Gupta MR, Lopez F, et al. Clostridium difficile colitis in lung transplantation. Transpl Infect Dis. 2008;10(4):245–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee JT, Hertz MI, Dunitz JM, et al. The rise of Clostridium difficile infection in lung transplant recipients in the modern era. Clin Transplant. 2013;27(2):303–10.PubMedCrossRefGoogle Scholar
  47. 47.
    Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357(9251):189–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med. 1994;330(4):257–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson S. Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J Infect. 2009;58(6):403–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Verheyden C, Bauer S, Haug M, Fraser T, Budev M, Neuner E. Epidemiology and risk factors for Clostridium difficile infection in lung transplant recipients. ID week 2013; 2–6 October 2013; San Francisco, CA.Google Scholar
  51. 51.
    Munoz P, Giannella M, Alcala L, et al. Clostridium difficile-associated diarrhea in heart transplant recipients: is hypogammaglobulinemia the answer? J Heart Lung Transplant. 2007;26(9):907–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med. 2000;342(6):390–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamani MH, Avery RK, Mawhorter SD, et al. Hypogammaglobulinemia following cardiac transplantation: a link between rejection and infection. J Heart Lung Transplant. 2001;20(4):425–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Corales R, Chua J, Mawhorter S, et al. Significant post-transplant hypogammaglobulinemia in six heart transplant recipients: an emerging clinical phenomenon? Transpl Infect Dis. 2000;2(3):133–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Sarmiento E, Rodriguez-Molina J, Munoz P, et al. Decreased levels of serum immunoglobulins as a risk factor for infection after heart transplantation. Transplant Proc. 2005;37(9):4046–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Neofytos D, Kobayashi K, Alonso CD, et al. Epidemiology, risk factors, and outcomes of Clostridium difficile infection in kidney transplant recipients. Transpl Infect Dis. 2013;15(2):134–41.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Keven K, Basu A, Re L, et al. Clostridium difficile colitis in patients after kidney and pancreas-kidney transplantation. Transpl Infect Dis. 2004;6(1):10–4.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Shah SA, Tsapepas DS, Kubin CJ, et al. Risk factors associated with Clostridium difficile infection after kidney and pancreas transplantation. Transpl Infect Dis. 2013;15(5):502–9.PubMedGoogle Scholar
  59. 59.
    Alonso CD, Marr KA. Clostridium difficile infection among hematopoietic stem cell transplant recipients: beyond colitis. Curr Opin Infect Dis. 2013;26(4):326–31.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Leung S, Metzger BS, Currie BP. Incidence of Clostridium difficile infection in patients with acute leukemia and lymphoma after allogeneic hematopoietic stem cell transplantation. Infect Control Hosp Epidemiol. 2010;31(3):313–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Alonso CD, Dufresne SF, Hanna DB, et al. Clostridium difficile infection after adult autologous stem cell transplantation: a multicenter study of epidemiology and risk factors. Biol Blood Marrow Transplant. 2013;19(10):1502–8.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Bilgrami S, Feingold JM, Dorsky D, et al. Incidence and outcome of Clostridium difficile infection following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1999;23(10):1039–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Arango JI, Restrepo A, Schneider DL, et al. Incidence of Clostridium difficile-associated diarrhea before and after autologous peripheral blood stem cell transplantation for lymphoma and multiple myeloma. Bone Marrow Transplant. 2006;37(5):517–21.PubMedCrossRefGoogle Scholar
  64. 64.
    van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010;6(5):e1000879.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Alegre ML, Bartman C, Chong AS. Microbes and allogeneic transplantation. Transplantation. 2014;97(1):5–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20(7):313–9.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209(5):903–11.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.••
    Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905–14. Using pyrosequencing for 16S ribosomal RNA genes, the authors uncovered major changes in the intestinal flora during allo-HSCT. They were able to correlate microbial shifts with subsequent development of bacteremia in that population. PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.••
    Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. Am J Transplant. 2014;14(2):416–27. Using 16S rRNA gene amplification, specific differences in the pre-transplant microbiota were observed among kidney transplant recipients and were subsequently associated with adverse events after transplantation, including rejection events and infectious complications. PubMedCrossRefGoogle Scholar
  70. 70.
    Dubberke ER, Burdette SD, AST Infectious Diseases Community of Practice. Clostridium difficile infections in solid organ transplantation. Am J Transplant. 2013;13 Suppl 4:42–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Parmar SR, Bhatt V, Yang J, Zhang Q, Schuster M. A retrospective review of metronidazole and vancomycin in the management of Clostridium difficile infection in patients with hematologic malignancies. J Oncol Pharm Pract. 2014;20(3):172–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Nilsson C, Aschan J, Hentschke P, et al. The effect of metronidazole on busulfan pharmacokinetics in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003;31(6):429–35.PubMedCrossRefGoogle Scholar
  73. 73.
    Gulbis AM, Culotta KS, Jones RB, Andersson BS. Busulfan and metronidazole: an often forgotten but significant drug interaction. Ann Pharmacother. 2011;45(7–8):e39.PubMedCrossRefGoogle Scholar
  74. 74.
    Clutter DS, Dubrovskaya Y, Merl MY, et al. Fidaxomicin versus conventional antimicrobial therapy in 59 recipients of solid organ and hematopoietic stem cell transplantation with Clostridium difficile-associated diarrhea. Antimicrob Agents Chemother. 2013;57(9):4501–5.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.•
    Cornely OA, Miller MA, Fantin B, et al. Resolution of Clostridium difficile-associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J Clin Oncol. 2013;31(19):2493–9. This study was one of the first to explore alternative treatment for CDI using fidaxomicin in an immunosuppressed patient population. PubMedCrossRefGoogle Scholar
  76. 76.
    ClinicalTrials.gov. Safety and efficacy of fidaxomicin versus placebo for prophylaxis against Clostridium difficile-associated diarrhea in adults undergoing hematopoietic stem cell transplantation (DEFLECT-1). http://clinicaltrials.gov/show/NCT01691248. Accessed 14 May 2014.
  77. 77.
    Sato K, Amada N, Sato T, et al. Severe elevations of FK506 blood concentration due to diarrhea in renal transplant recipients. Clin Transplant. 2004;18(5):585–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Pogue JM, DePestel DD, Kaul DR, et al. Systemic absorption of oral vancomycin in a peripheral blood stem cell transplant patient with severe graft-versus-host disease of the gastrointestinal tract. Transpl Infect Dis. 2009;11(5):467–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Neff G, Zacharias V, Kaiser TE, et al. Rifaximin for the treatment of recurrent Clostridium difficile infection after liver transplantation: a case series. Liver Transpl. 2010;16(8):960–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 2010;362(3):197–205.PubMedCrossRefGoogle Scholar
  81. 81.••
    Friedman-Moraco RJ, Mehta AK, Lyon GM, Kraft CS. Fecal microbiota transplantation for refractory Clostridium difficile colitis in solid organ transplant recipients. Am J Transplant. 2014;14(2):477–80. This was the first study to address the efficacy and safety of using fecal microbiota transplantation (FMT) in immunosuppressed, solid organ transplant recipients. In this small study, the outcomes after FMT were good, without significant adverse events noted. PubMedCrossRefGoogle Scholar
  82. 82.
    Ihunnah C, Kelly C, Hohmann E, et al. Fecal microbiota transplantation (FMT) for treatment of Clostridium difficile infection (CDI) in immunocompromised patients. Proceedings of the American College of Gastroenterology 2013 Annual Scientific Meeting; 11–16 October 2013; San Diego, CA.Google Scholar
  83. 83.
    Willems L, Porcher R, Lafaurie M, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol Blood Marrow Transplant. 2012;18(8):1295–301.PubMedCrossRefGoogle Scholar
  84. 84.
    Vehreschild MJ, Weitershagen D, Biehl LM, et al. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: epidemiology and risk factor analysis. Biol Blood Marrow Transplant. 2014;20(6):823–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Dunbar SA, Zhang H, Tang YW. Advanced techniques for detection and identification of microbial agents of gastroenteritis. Clin Lab Med. 2013;33(3):527–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Le Guern R, Herwegh S, Grandbastien B, et al. Evaluation of a new molecular test, the BD Max Cdiff, for detection of toxigenic Clostridium difficile in fecal samples. J Clin Microbiol. 2012;50(9):3089–90.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Carroll KC, Buchan BW, Tan S, et al. Multicenter evaluation of the verigene Clostridium difficile nucleic acid assay. J Clin Microbiol. 2013;51(12):4120–5.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Buchan BW, Mackey TL, Daly JA, et al. Multicenter clinical evaluation of the portrait toxigenic C. difficile assay for detection of toxigenic Clostridium difficile strains in clinical stool specimens. J Clin Microbiol. 2012;50(12):3932–6.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Deak E, Miller SA, Humphries RM. Comparison of Illumigene, Simplexa, and AmpliVue Clostridium difficile molecular assays for diagnosis of C. difficile infection. J Clin Microbiol. 2014;52(3):960–3.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lalande V, Barrault L, Wadel S, et al. Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol. 2011;49(7):2714–6.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Babady NE, Stiles J, Ruggiero P, et al. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol. 2010;48(12):4519–24.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Navidad JF, Griswold DJ, Gradus MS, Bhattacharyya S. Evaluation of luminex xTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. J Clin Microbiol. 2013;51(9):3018–24.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Infectious DiseasesBeth Israel Deaconess Medical CenterBostonUSA
  2. 2.Infectious Disease Service, Associate Medical Director, Infection ControlMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations