Current Infectious Disease Reports

, Volume 15, Issue 2, pp 148–157 | Cite as

Could Vitamin D Have a Potential Anti-Inflammatory and Anti-Infective Role in Bronchiectasis?

  • Jim Bartley
  • Jeff Garrett
  • Cameron C. Grant
  • Carlos A. CamargoJr


Bronchiectasis is a chronic infective and inflammatory respiratory disease that causes significant morbidity and mortality. Patients with non-cystic-fibrosis bronchiectasis are frequently vitamin D deficient, and vitamin D levels correlate with disease severity. Infection-specific actions of vitamin D include the enhancement of innate immunity and the moderation of inflammation caused by the adaptive immune response. Potentially, vitamin D could influence the processes that lead to bronchiectasis and the frequency and severity of acute exacerbations. Randomized trials of vitamin D supplementation have shown effects that are likely to be protective against the development of bronchiectasis. Several issues need to be clarified before the development of clinical trials to investigate the role of vitamin D in bronchiectasis. These include an optimal vitamin D supplementation dose and appropriate and sensitive outcome measures that include assessment of exacerbation frequency and severity, lung function, and health-related quality of life.


Bronchiectasis Inflammation Obstructive lung disease Pathophysiology Pathology Vitamin D Innate immunity Adaptive immunity Antimicrobial peptides Chronic rhinosinusitis Microbiotia 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf). 2012;76:315–25. An excellent recent review of the role of vitamin D in human immunity.CrossRefGoogle Scholar
  2. 2.
    Chishimba L, Thickett DR, Stockley RA, et al. The vitamin D axis in the lung: a key role for vitamin D-binding protein. Thorax. 2010;65:456–62.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Chalmers J, McHugh B, Docherty C, et al. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 2013;68:39–47. Recent case series documenting the association of low 25(OH)D levels with bronchiectasis and bronchiectasis severity.Google Scholar
  4. 4.
    • Camargo Jr CA, Ganmaa D, Frazier A, et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130:e561–7. A well-designed RCT showing a halving in incidence of upper respiratory tract infection in vitamin D deficient children given daily vitamin D supplementation.PubMedCrossRefGoogle Scholar
  5. 5.
    Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91:1255–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Manaseki-Holland S, Qader G, Isaq Masher M, et al. Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: a randomised controlled trial. Trop Med Int Health. 2010;15:1148–55.PubMedCrossRefGoogle Scholar
  7. 7.
    •• Coussens A, Wilkinson R, Hanifa Y, et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA. 2012;109:15449–54. An important clinical study documenting the anti-inflammatory actions of vitamin D in a clinical situation.PubMedCrossRefGoogle Scholar
  8. 8.
    Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2010.Google Scholar
  9. 9.
    Bradley JM, Moran F, Greenstone M. Physical training for bronchiectasis. Cochrane Database Syst Rev. 2002;3:CD002166.PubMedGoogle Scholar
  10. 10.
    Kapur N, Bell S, Kolbe J, et al. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2009;1:CD000996.PubMedGoogle Scholar
  11. 11.
    Lasserson T, Holt K, Greenstone M. Oral steroids for bronchiectasis (stable and acute exacerbations). Cochrane Database Syst Rev. 2001;4:CD002162.PubMedGoogle Scholar
  12. 12.
    Pizzutto SJ, Upham JW, Yerkovich ST, et al. Inhaled non-steroid anti-inflammatories for children and adults with bronchiectasis. Cochrane Database Syst Rev. 2010;4:CD007525.PubMedGoogle Scholar
  13. 13.
    • Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380:660–7. Azithromycin appears an important antibiotic in bronchiectasis management.PubMedCrossRefGoogle Scholar
  14. 14.
    Pincikova T, Nilsson K, Moen IE, et al. Inverse relation between vitamin D and serum total immunoglobulin G in the Scandinavian Cystic Fibrosis Nutritional Study. Eur J Clin Nutr. 2011;65:102–9.PubMedCrossRefGoogle Scholar
  15. 15.
    King P. The pathophysiology of bronchiectasis. Int J Chron Obstruct Pulmon Dis. 2009;4:411–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Holick MF. Vitamin D, deficiency. N Eng J Med. 2007;357:266–81.CrossRefGoogle Scholar
  17. 17.
    Carlberg C, Molnar F. Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem. 2012;12:528–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim ST, Cha HE, Kim DY, et al. Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol. 2003;123:81–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Bals R, Wang X, Zasloff M, et al. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95:9541–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Gudmundsson GH, Agerberth B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods. 1999;232:45–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Rockett KA, Brookes R, Udalova I, et al. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun. 1998;66:5314–21.PubMedGoogle Scholar
  24. 24.
    Desjardins M, Huber LA, Parton RG, et al. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol. 1994;124:677–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Russell DG. Mycobacterium and Leishmania: stowaways in the endosomal network. Trends Cell Biol. 1995;5:125–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Pieters J. Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol. 2001;13:37–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Hmama Z, Sendide K, Talal A, et al. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci. 2004;15:2131–40.CrossRefGoogle Scholar
  28. 28.
    Coussens A, Timms PM, Boucher BJ, et al. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology. 2009;127:539–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol. 2009;70:345–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Mahnke K, Johnson TS, Ring S, et al. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci. 2007;46:159–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med. 2000;343:338–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Margulies DH. TCR avidity: it’s not how strong you make it, it’s how you make it strong. Nat Immunol. 2001;2:669–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Slifka MK, Whitton JL. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat Immunol. 2001;2:711–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Lemire JM, Archer DC, Beck L, et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S–8.PubMedGoogle Scholar
  36. 36.
    Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11:29–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Review Immunol. 2008;8:523–32.CrossRefGoogle Scholar
  38. 38.
    Jeffery LE, Burke F, Mura M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183:5458–67.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–47.PubMedGoogle Scholar
  40. 40.
    Dimeloe S, Nanzer A, Ryanna K, et al. Regulatory T cells, inflammation and the allergic response - The role of glucocorticoids and Vitamin D. J Steroid Biochem Mol Biol. 2010;120:86–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Jirapongsananuruk O, Melamed I, Leung DY. Additive immunosuppressive effects of 1,25(OH)2D3 and corticosteroids on Th1, but not Th2, responses. J Allergy Clin Immunol. 2000;106:981–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Pichler J, Gerstmayr M, Szepfalusi Z, et al. 1 alpha,25(OH)2D3 inhibits not only Th1 but also Th2 differentiation in human cord blood T cells. Pediatr Res. 2002;52:12–8.PubMedGoogle Scholar
  43. 43.
    • Rothers J, Wright A, Halonen M, et al. Cord blood 25-hydroxyvitamin D levels are associated with aeroallergen sensitization in children from Tucson, Arizona. J Allergy Clin Immunol. 2011;128:1093–9. This article has shown that both high and low 25-hydroxyvitamin D levels are associated with aeroallergen sensitization.PubMedCrossRefGoogle Scholar
  44. 44.
    Dunne Jr WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15:155–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Otto M. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol. 2006;306:251–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidtchen A, Frick I-M, Andersson E, et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol. 2002;46:157–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta. 2006;1758:1513–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Imm. 2008;76:4176–82.CrossRefGoogle Scholar
  49. 49.
    Chennupati SK, Chiu AG, Tamashiro E, et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy. 2009;23:46–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Matheson EM, Mainous 3rd AG, Hueston WJ, et al. Vitamin D and methicillin-resistant Staphylococcus aureus nasal carriage. Scand J Infect Dis. 2010;42:455–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Olsen K, Falch BM, Danielsen K, et al. Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels. Eur J Clin Microbiol Infect Dis. 2012;31:465–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Eastham KM, Freeman R, Kearns AM, et al. Clinical features, aetiology and outcome of empyema in children in the north east of England. Thorax. 2004;59:522–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Resp Crit Care Med. 2000;162:1277–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Kolbe J, Wells A. Bronchiectasis: a neglected cause of respiratory morbidity and mortality. Respirology. 1996;1:221–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Roberts HJ, Hubbard R. Trends in bronchiectasis mortality in England and Wales. Respir Med. 2010;104:981–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Seitz AE, Olivier KN, Steiner CA, et al. Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993–2006. Chest. 2010;138:944–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Field CE. Bronchiectasis. A long-term follow-up of medical and surgical cases from childhood. Arch Dis Child. 1961;36:587–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Twiss J, Metcalfe R, Edwards E, et al. New Zealand national incidence of bronchiectasis “too high” for a developed country. Arch Dis Child. 2005;90:737–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Haidopoulou K, Calder A, Jones A, et al. Bronchiectasis secondary to primary immunodeficiency in children: longitudinal changes in structure and function. Pediatr Pulmonol. 2009;44:669–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Eastham KM, Fall AJ, Mitchell L, et al. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax. 2004;59:324–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Courtney J, Kelly M, Watt A, et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron Respir Dis. 2008;5:161–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Dupont M, Gacouin A, Lena H, et al. Survival of patients with bronchiectasis after the first ICU stay for respiratory failure. Chest. 2004;125:1815–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Singleton R, Morris A, Redding G, et al. Bronchiectasis in Alaska Native children: causes and clinical courses. Pediatr Pulmonol. 2000;29:182–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Roberts ME, Lowndes L, Milne DG, et al. Socioeconomic deprivation, readmissions, mortality and acute exacerbations of bronchiectasis. Intern Med J. 2012;42:e129–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Roberts H, Wells A, Milne D, et al. Airflow obstruction in bronchiectasis: correlation between computed tomography features and pulmonary function tests. Thorax. 2000;55:198–204.PubMedCrossRefGoogle Scholar
  66. 66.
    Gaga M, Bentley AM, Humbert M, et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax. 1998;53:685–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Barker AF. Bronchiectasis. N Engl J Med. 2002;346:1383–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Zheng L, Tipoe G, Lam W, et al. Endothelin-1 in stable bronchiectasis. Eur Respir J. 2000;16:146–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Tsang KW, Chan K, Ho P, et al. Sputum elastase in steady-state bronchiectasis. Chest. 2000;117:420–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Richman-Eisenstat JB, Jorens PG, Hebert CA, et al. Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases. Am J Physiol. 1993;264:L413–8.PubMedGoogle Scholar
  71. 71.
    Shum DK, Chan SC, Ip MS. Neutrophil-mediated degradation of lung proteoglycans: stimulation by tumor necrosis factor-alpha in sputum of patients with bronchiectasis. Am J Resp Crit Care Med. 2000;162:1925–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Wilson R, Cole PJ. The effect of bacterial products on ciliary function. Am Rev Resp Dis. 1988;138:S49–53.PubMedCrossRefGoogle Scholar
  73. 73.
    • Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl Res. 2012;160:258–66. An important review article about a rapidly evolving area of microbiology.PubMedCrossRefGoogle Scholar
  74. 74.
    Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Resp Crit Care Med. 2011;184:957–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Hare KM, Grimwood K, Leach AJ, et al. Respiratory bacterial pathogens in the nasopharynx and lower airways of Australian indigenous children with bronchiectasis. J Pediatr. 2010;157:1001–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Godoy JM, Godoy AN, Ribalta G, et al. Bacterial pattern in chronic sinusitis and cystic fibrosis. Otolaryngol Head Neck Surg. 2011;145:673–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Guilemany JM, Angrill J, Alobid I, et al. United airways: the impact of chronic rhinosinusitis and nasal polyps in bronchiectasic patient’s quality of life. Allergy. 2009;64:1524–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Bardin P, Van Heerden B, Joubert J. Absence of pulmonary aspiration of sinus contents in patients with asthma and sinusitis. J Allergy Clin Immunol. 1990;86:82–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Brehm J, Schuemann B, Fuhlbrigge A, et al. Serum vitamin D levels and severe asthma exacerbations in the childhood asthma management program study. J Allergy Clin Immunol. 2010;126:52–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Brehm JM, Acosta-Perez E, Klei L, et al. Vitamin D insufficiency and severe asthma exacerbations in Puerto Rican children. Am J Resp Crit Care Med. 2012;186:140–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Lehouck A, Mathieu C, Carremans C, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2012;156:105–14.PubMedGoogle Scholar
  82. 82.
    •• Bartley J, Camargo CA Jr. Vitamin D and infection. In: Vitamin D: oxidation, immunity & aging. Edited by Gombart A. Taylor & Francis Group, CRC Press; 2012:323–48. A recent review of clinical studies investigating the role of vitamin D in infectious disease.Google Scholar
  83. 83.
    Majak P, Olszowiec-Chlebna M, Smejda K, et al. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol. 2011;127:1294–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Manaseki-Holland S, Maroof Z, Bruce J, et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. Lancet. 2012;379:1419–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011;377:242–50.PubMedCrossRefGoogle Scholar
  86. 86.
    • Murdoch D, Slow S, Chambers S, et al. Effect of vitamin D3 supplementation on upper respiratory infections in healthy adults: A randomised, double blind, placebo-controlled trial. JAMA. 2012;308:1333–9. A recent RCT indicating that vitamin D levels above 75nmol/L may not provide protection against upper respiratory infection.PubMedCrossRefGoogle Scholar
  87. 87.
    Nielsen NO, Skifte T, Andersson M, et al. Both high and low serum vitamin D concentrations are associated with tuberculosis: a case–control study in Greenland. Br J Nutr. 2010;104:1487–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Martineau AR. Bolus-dose vitamin D and prevention of childhood pneumonia. Lancet. 2012;379:1373–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Stephenson A, Brotherwood M, Robert R, et al. Cholecalciferol significantly increases 25-hydroxyvitamin D concentrations in adults with cystic fibrosis. Am J Clin Nutr. 2007;85:1307–11.PubMedGoogle Scholar
  90. 90.
    Grossmann RE, Zughaier SM, Kumari M, et al. Pilot study of vitamin D supplementation in adults with cystic fibrosis pulmonary exacerbation: A randomized, controlled trial. Dermatoendocrinol. 2012;4:191–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Grossmann RE, Zughaier SM, Liu S, et al. Impact of vitamin D supplementation on markers of inflammation in adults with cystic fibrosis hospitalized for a pulmonary exacerbation. Eur J Clin Nutr. 2012;66:1072–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Reid D, Toole B, Knox S, et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr. 2011;93:1006–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.PubMedGoogle Scholar
  94. 94.
    Calverley P, Pauwels Dagger R, Lofdahl C, et al. Relationship between respiratory symptoms and medical treatment in exacerbations of COPD. Eur Respir J. 2005;26:406–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Murray MP, Turnbull K, MacQuarrie S, et al. Validation of the Leicester Cough Questionnaire in non-cystic fibrosis bronchiectasis. Eur Resp J. 2009;34:125–31.CrossRefGoogle Scholar
  96. 96.
    Eaton T, Young P, Fergusson W, et al. The Dartmouth COOP Charts: a simple, reliable, valid and responsive quality of life tool for chronic obstructive pulmonary disease. Qual Life Res. 2005;14:575–85.PubMedCrossRefGoogle Scholar
  97. 97.
    Djukanovic R, Sterk P, Fahy J, et al. Standardised methodology of sputum induction and processing. Eur Resp J. 2002;37:1s–2.CrossRefGoogle Scholar
  98. 98.
    Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect. 2007;135:1095–6. author reply 7–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Avenell A, Cook JA, Maclennan GS, et al. Vitamin D supplementation to prevent infections: a sub-study of a randomised placebo-controlled trial in older people (RECORD trial, ISRCTN 51647438). Age Ageing. 2007;36:574–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Li-Ng M, Aloia JF, Pollack S, et al. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol Infect. 2009;137:1396–404.PubMedCrossRefGoogle Scholar
  101. 101.
    Laaksi I, Ruohola JP, Mattila V, et al. Vitamin D supplementation for the prevention of acute respiratory tract infection: a randomized, double-blinded trial among young Finnish men. J Inf Dis. 2010;202:809–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jim Bartley
    • 1
  • Jeff Garrett
    • 2
  • Cameron C. Grant
    • 3
  • Carlos A. CamargoJr
    • 4
  1. 1.Department of SurgeryUniversity of AucklandAucklandNew Zealand
  2. 2.Department of MedicineUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Paediatrics and Centre for Longitudinal Research—He Ara ki Mua, University of Auckland & Starship Children’s Hospital, Auckland District Health Board, Auckland City HospitalAucklandNew Zealand
  4. 4.Department of Emergency MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations