Current Infectious Disease Reports

, Volume 15, Issue 1, pp 85–100 | Cite as

HIV Drug Resistance and the Advent of Integrase Inhibitors

  • Peter K. Quashie
  • Thibault Mesplède
  • Mark A. Wainberg
HIV/AIDS (R MacArthur, Section Editor)

Abstract

This review focuses on the topic of HIV integrase inhibitors that are potent antiretroviral drugs that efficiently decrease viral load in patients. However, emergence of resistance mutations against this new class of drugs represents a threat to their long-term efficacy. Here, we provide new information about the most recent mutations identified and other mutations that confer resistance to several integrase inhibitors, such as new resistance mutations—for example, G118R, R263K, and S153Y—that have been identified through in vitro selection studies with second-generation integrase strand transfer inhibitors (INSTIs). These add to the three main resistance pathways involving mutations at positions Y143, N155, and Q148. Deep sequencing, structural modeling, and biochemical analyses are methods that currently help in the understanding of the mechanisms of resistance conferred by these mutations. Although the new resistance mutations appear to confer only low levels of cross-resistance to second-generation drugs, the Q148 pathway with numerous secondary mutations has the potential to significantly decrease susceptibility to all drugs of the INSTI family of compounds.

Keywords

HIV-1 Integrase strand transfer inhibitors (INSTIs) Resistance Mutations 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. 1.
    Whitney JB, Lim SY, Wainberg MA. Evolutionary mechanisms of retroviral persistence. AIDS Rev. 2011;13(4):234–9.PubMedGoogle Scholar
  2. 2.
    Wainberg MA, Zaharatos GJ, Brenner BG. Development of antiretroviral drug resistance. N Engl J Med. 2011;365(7):637–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF. Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology. 2008;5:114.PubMedCrossRefGoogle Scholar
  4. 4.
    Li X, Krishnan L, Cherepanov P, Engelman A. Structural biology of retroviral DNA integration. Virology. 2011;411(2):194–205.PubMedCrossRefGoogle Scholar
  5. 5.
    Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287(5453):646–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Schafer JJ, Squires KE. Integrase inhibitors: a novel class of antiretroviral agents. Ann Pharmacother. 2010;44(1):145–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Briz V, Garrido C, Poveda E, Morello J, Barreiro P, de Mendoza C, et al. Raltegravir and etravirine are active against HIV type 1 group O. AIDS Res Hum Retroviruses. 2009;25(2):225–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Nguyen BY, Isaacs RD, Teppler H, Leavitt RY, Sklar P, Iwamoto M, et al. Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium. Ann N Y Acad Sci. 2011;1222:83–9.PubMedCrossRefGoogle Scholar
  11. 11.
    • Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 2008;359(4):339–54. This study was the first to demonstrate the safety and efficacy of a HIV integrase inhibitor in a large randomized phase 3 clinical trial. Follow-up data have documented the superiority of Ralegravir versus a NNRTI, efavirenz, over a period of 5 years in patients also receiving the double nucleoside combination of TDF/FTC.PubMedCrossRefGoogle Scholar
  12. 12.
    Wills T, Vega V. Elvitegravir: a once-daily inhibitor of HIV-1 integrase. Expert Opin Investig Drugs. 2012;21(3):395–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Katlama C, Murphy R. Dolutegravir for the treatment of HIV. Expert Opin Investig Drugs. 2012;21(4):523–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, et al. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res. 2008;80(2):213–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakahara K, Wakasa-Morimoto C, Kobayashi M, Miki S, Noshi T, Seki T, et al. Secondary mutations in viruses resistant to HIV-1 integrase inhibitors that restore viral infectivity and replication kinetics. Antiviral Res. 2009;81(2):141–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis. 2010;50(4):605–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, et al. Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res. 2011;91(2):167–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Bar-Magen T, Sloan RD, Faltenbacher VH, Donahue DA, Kuhl BD, Oliveira M, et al. Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes. Retrovirology. 2009;6:103.PubMedCrossRefGoogle Scholar
  19. 19.
    Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol. 2010;84(18):9210–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother. 2011;55(1):321–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Song I, Borland J, Min S, Lou Y, Chen S, Patel P, et al. Effects of etravirine alone and with ritonavir-boosted protease inhibitors on the pharmacokinetics of dolutegravir. Antimicrob Agents Chemother. 2011;55(7):3517–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Min S, Song I, Borland J, Chen S, Lou Y, Fujiwara T, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother. 2010;54(1):254–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Min S, Sloan L, Dejesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. Aids. 2011;25(14):1737–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, et al. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology. 2010;402(2):338–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Hare S, Smith SJ, Metifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor Dolutegravir (S/GSK1349572). Mol Pharmacol 2011.Google Scholar
  27. 27.
    Seki T, Kobayashi M, Wakasa-Morimoto C, Yoshinaga T, Sato A, Fujiwara T, et al. S/GSK1349572 is a potent next generation HIV integrase inhibitor and demonstrates a superior resistance profile substantiated with 60 integrase mutant molecular clones. 17th CROI, Conference on retroviruses and opportunistic infections, San Francisco, CA. 2010.Google Scholar
  28. 28.
    • Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, et al. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor Dolutegravir. J Virol. 2012;86(5):2696–705. This study was the first to definitively demonstrate that resistance against dolutegravir may be likely to occur, based on a R263K mutation in the HIV integrase gene.PubMedCrossRefGoogle Scholar
  29. 29.
    Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A. 2010;107(36):15910–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Cherepanov P, Maertens GN, Hare S. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol. 2011;21(2):249–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Maertens GN, Hare S, Cherepanov P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature. 2010;468(7321):326–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci U S A. 2000;97(21):11244–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A. 2010;107(46):20057–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A. 2002;99(10):6661–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, et al. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors. J Med Chem. 2011;54(24):8407–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, et al. HIV-1 IN strand transfer chelating inhibitors: a focus on metal binding. Mol Pharm. 2011;8(2):507–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson AA, Santos W, Pais GC, Marchand C, Amin R, Burke Jr TR, et al. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem. 2006;281(1):461–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Jayappa KD, Ao Z, Yang M, Wang J, Yao X. Identification of critical motifs within HIV-1 integrase required for importin alpha3 interaction and viral cDNA nuclear import. J Mol Biol. 2011;410(5):847–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Metifiot M, Vandegraaff N, Maddali K, Naumova A, Zhang X, Rhodes D, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. Aids. 2011;25(9):1175–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Kawonga M, Blanchard K, Cooper D, Cullingworth L, Dickson K, Harrison T, et al. Integrating medical abortion into safe abortion services: experience from three pilot sites in South Africa. J Fam Plann Reprod Health Care. 2008;34(3):159–64.PubMedCrossRefGoogle Scholar
  42. 42.
    • Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9. This article shows that dolutegravir is likely to be active on a once-daily basis due to the fact that it binds almost irreversibly to the HIV integrase molecule.PubMedCrossRefGoogle Scholar
  43. 43.
    Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Oliveira M, Brenner BG, Wainberg MA. Isolation of drug-resistant mutant HIV variants using tissue culture drug selection. Methods Mol Biol. 2009;485:427–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82(21):10366–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones G, Ledford R, Yu F, Chen X, Miller MD, Tsiang M, et al. In vitro resistance profile of HIV-1 mutants selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). 14th CROI, Conference on Retroviruses and opportunistic infections, Los Angeles, California, 2007.Google Scholar
  47. 47.
    Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Codoner FM, Pou C, Thielen A, Garcia F, Delgado R, Dalmau D, et al. Dynamic escape of pre-existing raltegravir-resistant HIV-1 from raltegravir selection pressure. Antiviral Res. 2010;88(3):281–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D'Arrigo R, et al. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis. 2012;205(4):557–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Winters B, Lloyd RJ, Miller M, Holodniy M. Evolution of IN inhibitor resistance mutations in patients failling elvitegravir-containing regimens. 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 701.Google Scholar
  51. 51.
    Canducci F, Sampaolo M, Marinozzi MC, Boeri E, Spagnuolo V, Galli A, et al. Dynamic patterns of human immunodeficiency virus type 1 integrase gene evolution in patients failing raltegravir-based salvage therapies. Aids. 2009;23(4):455–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Charpentier C, Karmochkine M, Laureillard D, Tisserand P, Belec L, Weiss L, et al. Drug resistance profiles for the HIV integrase gene in patients failing raltegravir salvage therapy. HIV Med. 2008;9(9):765–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Fransen S, Karmochkine M, Huang W, Weiss L, Petropoulos CJ, Charpentier C. Longitudinal analysis of raltegravir susceptibility and integrase replication capacity of human immunodeficiency virus type 1 during virologic failure. Antimicrob Agents Chemother. 2009;53(10):4522–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Malet I, Delelis O, Soulie C, Wirden M, Tchertanov L, Mottaz P, et al. Quasispecies variant dynamics during emergence of resistance to raltegravir in HIV-1-infected patients. J Antimicrob Chemother. 2009;63(4):795–804.PubMedCrossRefGoogle Scholar
  55. 55.
    Mouscadet JF, Delelis O, Marcelin AG, Tchertanov L. Resistance to HIV-1 integrase inhibitors: a structural perspective. Drug Resist Updat. 2010;13(4–5):139–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203(9):1204–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Malet I, Fourati S, Charpentier C, Morand-Joubert L, Armenia D, Wirden M, et al. The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype. J Antimicrob Chemother. 2011;66(12):2827–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Sato A, Seki T, Kobayashi M, Yoshinaga T, Fujiwara T, Underwood M, et al. In vitro passage of drug resistant HIV-1 against a next generation integrase inhibitor (INI), S/GSK1349572. 49th ICAAC, San Francisco, CA. 2009.Google Scholar
  59. 59.
    Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M, McColl DJ, et al. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antiviral Res. 2012;93(2):288–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, et al. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis. 2011;204(11):1811–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Stellbrink HJ, Reynes J, Lazzarin A, Voronin E, Pulido F, Felizarta F, et al. Dolutegravir in combination therapy exhibits rapid and sustained antiviral response in ARV-naïve adults: 96-week results from SPRING-1 (ING112276). 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 102LB.Google Scholar
  62. 62.
    van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Enron J, Kumar P, Lazzarin A, Richmond G, Soriano V, Huang J, et al. DTG in Subjects with HIV Exhibiting RAL Resistance: Functional Monotherapy Results of VIKING Study Cohort II. 18th CROI, Conference on retroviruses and opportunistic infections, Boston, MA, 2011. Abstract: p. 151LB.Google Scholar
  64. 64.
    Kobayashi M, Seki T, Yoshinaga T, Sato A, Fujiwara T, Underwood M, et al. Antiviral Activity in vitro of the INI, Dolutegravir, against Raltegravir-resistant HIV-2 Mutants. 19th CROI, Conference on retroviruses and opportunistic infections, Seattle, WA, 2012. Abstract: p. 691.Google Scholar
  65. 65.
    Gupta SP, Nagappa AN. Design and development of integrase inhibitors as anti-HIV agents. Curr Med Chem. 2003;10(18):1779–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Sluis-Cremer N, Tachedjian G. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Eur J Biochem. 2002;269(21):5103–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Maurin C, Bailly F, Cotelle P. Structure-activity relationships of HIV-1 integrase inhibitors–enzyme-ligand interactions. Curr Med Chem. 2003;10(18):1795–810.PubMedCrossRefGoogle Scholar
  68. 68.
    Singh SB, Jayasuriya H, Salituro GM, Zink DL, Shafiee A, Heimbuch B, et al. The complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isocomplestatin, chloropeptin I, new complestatins, A and B, and acid-hydrolysis products of chloropeptin I. J Nat Prod. 2001;64(7):874–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Jing N, Xu X. Rational drug design of DNA oligonucleotides as HIV inhibitors. Curr Drug Targets Infect Disord. 2001;1(2):79–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Brigo A, Mustata GI, Briggs JM, Moro S. Discovery of HIV-1 integrase inhibitors through a novel combination of ligand and structure-based drug design. Med Chem. 2005;1(3):263–75.PubMedCrossRefGoogle Scholar
  71. 71.
    de Soultrait VR, Desjobert C, Tarrago-Litvak L. Peptides as new inhibitors of HIV-1 reverse transcriptase and integrase. Curr Med Chem. 2003;10(18):1765–78.PubMedCrossRefGoogle Scholar
  72. 72.
    ••Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287(5453):646–50. This article was the first to demonstrate that the development of integrase strand transfer inhibitors was possible and opened up the field of anti-integrase drug development.PubMedCrossRefGoogle Scholar
  73. 73.
    Reinke R, Lee DJ, Robinson WE. Inhibition of human immunodeficiency virus type 1 isolates by the integrase inhibitor L-731,988, a diketo Acid. Antimicrob Agents Chemother. 2002;46(10):3301–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Hazuda D, Iwamoto M, Wenning L. Emerging pharmacology: inhibitors of human immunodeficiency virus integration. Annu Rev Pharmacol Toxicol. 2009;49:377–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Marchand C, Zhang X, Pais GC, Cowansage K, Neamati N, Burke TR, et al. Structural determinants for HIV-1 integrase inhibition by beta-diketo acids. J Biol Chem. 2002;277(15):12596–603.PubMedCrossRefGoogle Scholar
  76. 76.
    FDA. FDA approval of Isentress (raltegravir). 2007 [cited 2011 07/08/2011].Google Scholar
  77. 77.
    Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis. 2010;50(4):605–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Donahue DA, Sloan RD, Kuhl BD, Bar-Magen T, Schader SM, Wainberg MA. Stage-dependent inhibition of HIV-1 replication by antiretroviral drugs in cell culture. Antimicrob Agents Chemother. 2010;54(3):1047–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet. 2007;369(9569):1261–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Iwamoto M. Rifampin (RIF) modestly reduces plasma levels of MK-0518, in 8th Int. Congr. Drug Therapy in HIV Infection (HIV-8), L.S. Wenning LA, Kost JT, Mangin E, et al, editors. 2006: Glasgow, Scotland.Google Scholar
  81. 81.
    Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, et al. Rapid and durable antiretroviral effect of the HIV-1 Integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr. 2007;46(2):125–33.PubMedCrossRefGoogle Scholar
  82. 82.
    Eron JJ, Rockstroh JK, Reynes J, Andrade-Villanueva J, Ramalho-Madruga JV, Bekker LG, et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect Dis, 2011.Google Scholar
  83. 83.
    Vispo E, Barreiro P, Maida I, Mena A, Blanco F, Rodríguez-Novoa S, et al. Simplification from protease inhibitors to once- or twice-daily raltegravir: the ODIS trial. HIV Clin Trials. 2010;11(4):197–204.PubMedCrossRefGoogle Scholar
  84. 84.
    Lanzafame M, Hill A, Lattuada E, Calcagno A, Bonora S. Raltegravir: is a 400 mg once-daily dose enough? J Antimicrob Chemother. 2010;65(3):595–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother. 2008;52(4):1351–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Garrido C, de Mendoza C, Soriano V. Resistance to integrase inhibitors. Enferm Infecc Microbiol Clin. 2008;26 Suppl 12:40–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Bar-Magen T, Donahue DA, McDonough EI, Kuhl BD, Faltenbacher VH, Xu H, et al. HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays. AIDS. 2010;24(14):2171–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Delelis O, Malet I, Na L, Tchertanov L, Calvez V, Marcelin AG, et al. The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res. 2009;37(4):1193–201.PubMedCrossRefGoogle Scholar
  89. 89.
    Johnson VA, Brun-Vézinet F, Clotet B, Günthard HF, Kuritzkes DR, Pillay D, et al. Update of the drug resistance mutations in HIV-1: December 2010. Top HIV Med. 2010;18(5):156–63.PubMedGoogle Scholar
  90. 90.
    Hu Z, Kuritzkes DR. Effect of raltegravir resistance mutations in HIV-1 integrase on viral fitness. J Acquir Immune Defic Syndr. 2010;55(2):148–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Canducci F, Barda B, Ceresola E, Spagnuolo V, Sampaolo M, Boeri E, et al. Evolution patterns of raltegravir-resistant mutations after integrase inhibitor interruption. Clin Microbiol Infect. 2011;17(6):928–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med. 2008;359(4):355–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203(9):1204–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, Andrade-Villanueva J, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet. 2010;375(9712):396–407.PubMedCrossRefGoogle Scholar
  95. 95.
    Klibanov OM. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2009;10(2):190–200.PubMedGoogle Scholar
  96. 96.
    Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem. 2006;49(5):1506–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Matsuzaki Y. JTK-303/GS 9137, a Novel Small-molecule Inhibitor of HIV-1 Integrase: Anti-HIV Activity Profile and Pharmacokinetics in Animals. in 13th Conference on Retroviruses and Opportunistic Infections. 2006. Denver, Colorado, USA.Google Scholar
  98. 98.
    Annonymous. Single-tablet Quad regimen achieves high rate of virologic suppression. AIDS Patient Care STDS, 2010. 24(3): p. 197.Google Scholar
  99. 99.
    Ramanathan S, Mathias AA, German P, Kearney BP. Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet. 2011;50(4):229–44.PubMedCrossRefGoogle Scholar
  100. 100.
    Mathias AA, West S, Hui J, Kearney BP. Dose-response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther. 2009;85(1):64–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Isao K, Ishikawa T, Ishibashi M, Irie S, Kakee A, T. Japan Tobacco Inc., et al. Clinical Pharmacology Research Clinic, Japan. Safety and Pharmacokinetics of Single Oral Dose of JTK-303/GS-9137, a Novel HIV Integrase Inhibitor, in Healthy Volunteers. in 13th Conference on Retroviruses and Opportunistic Infections. 2006. Denver, Colorado, USA.Google Scholar
  102. 102.
    Elion R, Gathe J, Rashburn B, et al. The single-tablet regimen elvitegravir/cobicstat/emtricitabine/tenofovir disoproxil fumarate (EVG/COBI/FTC/TDF; "QUAD") maintains a high rate of virologic supression, and cobicstat (COBI) is an effective pharmacoenhancer through 48 weeks. in 50th International Conference on Antimicrobial Agents and Chemotherapy. 2010. Boston, Ma, USA.Google Scholar
  103. 103.
    Zolopa AR, Berger DS, Lampiris H, Zhong L, Chuck SL, Enejosa JV, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis. 2010;201(6):814–22.PubMedCrossRefGoogle Scholar
  104. 104.
    Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82(21):10366–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Taiwo B, Zheng L, Gallien S, Matining RM, Kuritzkes DR, Wilson CC, et al. Efficacy of a Nucleoside-sparing Regimen of Darunavir/Ritonavir Plus Raltegravir in Treatment-Naïve HIV-1-infected Patients (ACTG A5262). AIDS, 2011.Google Scholar
  106. 106.
    Métifiot M, Vandegraaff N, Maddali K, Naumova A, Zhang X, Rhodes D, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. AIDS. 2011;25(9):1175–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764–74.PubMedCrossRefGoogle Scholar
  108. 108.
    Dicker IB, Terry B, Lin Z, Li Z, Bollini S, Samanta HK, et al. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors. J Biol Chem. 2008;283(35):23599–609.PubMedCrossRefGoogle Scholar
  109. 109.
    McColl DJ, Fransen S, Gupta S, et al. Basic Principles and Clinical Implications, in XVI International HIV Drug Resistance Workshop. 2007.Google Scholar
  110. 110.
    Canducci F, Sampaolo M, Marinozzi MC, Boeri E, Spagnuolo V, Galli A, et al. Dynamic patterns of human immunodeficiency virus type 1 integrase gene evolution in patients failing raltegravir-based salvage therapies. AIDS. 2009;23(4):455–60.PubMedCrossRefGoogle Scholar
  111. 111.
    Al-Mawsawi LQ, Al-Safi RI, Neamati N. Anti-infectives: clinical progress of HIV-1 integrase inhibitors. Expert Opin Emerg Drugs. 2008;13(2):213–25.PubMedCrossRefGoogle Scholar
  112. 112.
    Vacca J, Wai J, Fisher T, Embrey M, Hazuda D, Miller M, et al. Discovery of MK-2048 – subtle changes confer unique resistance properties to a series of tricyclic hydroxypyrrole integrase strand transfer inhibitor, in 4th International AIDS Society's Conference on HIV Pathogenesis, Treatment and Prevention. 2007: Sydney, Australia.Google Scholar
  113. 113.
    Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother. 2011;55(1):321–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Pandey KK, Bera S, Vora AC, Grandgenett DP. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors. Biochemistry. 2010;49(38):8376–87.PubMedCrossRefGoogle Scholar
  115. 115.
    Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, et al. Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res. 2011;91(2):167–76.PubMedCrossRefGoogle Scholar
  116. 116.
    Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol. 2010;84(18):9210–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Alcorn K. Raltegravir shows promise as a PREP drug. 2009 [cited 2011 27/08/2011]; Available from: http://www.aidsmap.com/Raltegravir-shows-potential-for-use-as-PrEP-drug/page/1434320/.
  118. 118.
    Seegulam ME, Ratner L. Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob Agents Chemother. 2011;55(5):2011–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Eron J, Livrozet J, Mortal P, et al. Activity of integrase inhibitor S/GSK9572 in subjects with HIV exhibiting raltegravir resistance: week 24 results of VIKING Study, in 10th International Conference on Drug Therapy in HIV Infection. 2010: Glasgow, Scotland.Google Scholar
  120. 120.
    Tomokazu Yoshinaga MK-K, Seki T, Ishida K, Akihisa E, Kobayashi M, Sato A, et al. Strong Inhibition of Wild-Type and Integrase Inhibitor (INI)-Resistant HIV Integrase (IN) Strand Transfer Reaction by the Novel INI S/GSK1349572, in International HIV & Hepatitis Virus Drug Resistance Workshop. 2010: Dubrovnik, Croatia.Google Scholar
  121. 121.
    Bar-Magen T, Sloan RD, Faltenbacher VH, Donahue DA, Kuhl BD, Oliveira M, et al. Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes. Retrovirology. 2009;6:103.PubMedCrossRefGoogle Scholar
  122. 122.
    Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology. 2011;8:52.PubMedCrossRefGoogle Scholar
  123. 123.
    Seki T, Kobayashi, K, Wakasa-Morimoto C, Yoshinaga T, Sato A, Fujiwara T, et al. No Impact of HIV Integrase Polymorphisms at Position 101 and 124 on in vitro Resistance Isolation with Dolutegravir (DTG, S/GSK1349572), A Potent Next Generation HIV Integrase Inhibitor, in 17th International Conference on Retroviruses and Opportunistic Infections. 2010: San Francisco, California.Google Scholar
  124. 124.
    Underwood M, Brian J, Sato A, et al. S/GSK1349572: A Next Generation Integrase Inhibitor with Activity Against Integrase Inhibitor-Resistant Clinical Isolates from Patients Experiencing Virologic Failure while on Raltegravir Therapy, in 5th International AIDS Society's Conference on HIV Pathogenesis. 2009.Google Scholar
  125. 125.
    Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55(2):813–21.PubMedCrossRefGoogle Scholar
  126. 126.
    Min S, Song I, Borland J, Chen S, Lou Y, Fujiwara T, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother. 2010;54(1):254–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Lalezari J, Sloan L, DeJesus E, Hawkins E, McCurdy L, Song I, et al. Potent Antiviral Activity of S/GSK1349572, A Next Generation Integrase Inhibitor (INI), in INI-Naïve HIV-1-Infected Patients: ING111521 Protocol, in 5th International AIDS Society's Conference on HIV Pathogenesis. 2009: Cape Town, South Africa.Google Scholar
  128. 128.
    Min S, Sloan L, Dejesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS. 2011;25(14):1737–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Rockstroh J, Felizarta F, Maggiolo FF, Pulido F, Stellbrink HJ, Tsybakova O, et al. Once-daily S/GSK1349572 combination therapy in antiretroviral-naïve adults: rapid and potent 24-week antiviral responses in SPRING-1 (ING112276), in 10th International Conference on Drug Therapy in HIV Infection. 2010: Glasgow, Scotland.Google Scholar
  130. 130.
    Jones G, Ledford R, Yu F, Miller M, Tsiang M, McColl D. Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). . in 14th Conference on Retroviruses and Opportunistic Infections. 2007. Los Angeles, CA.Google Scholar
  131. 131.
    Wainberg MA, Quashie PK, Han Y-S, Singhroy DN, Oliviera M, Moisi D, et al. Dolutegravir selects for R263K mutation in Subtype B and AG but not subtype C integrase enzymes. in 4th International Conference on Retroviral Integration. 2011. Siena, Italy.Google Scholar
  132. 132.
    Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than Raltegravir and Elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 2011;55(10):4552–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Grobler JA, McKenna PM, Ly S, et al. Functionally irreversible inhibition of integration by slowly dissociating strand transfer inhibitors. in 10th International Conference on Clinical Pharmacology of HIV Therapy. 2009. Amsterdam, Netherlands.Google Scholar
  134. 134.
    Garrido C, Soriano V, Geretti AM, Zahonero N, Garcia S, Booth C, et al. Resistance associated mutations to dolutegravir (S/GSK1349572) in HIV-infected patients - impact of HIV subtypes and prior raltegravir experience. Antiviral Res. 2011;90(3):164–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Malet I, Wirden M, Fourati S, Armenia D, Masquelier B, Fabeni L, et al. Prevalence of resistance mutations related to integrase inhibitor S/GSK1349572 in HIV-1 subtype B raltegravir-naive and -treated patients. J Antimicrob Chemother. 2011;66(7):1481–3.PubMedCrossRefGoogle Scholar
  136. 136.
    O’Neal R. Dolutegravir: A new integrase inhibitor in development. 2011 [cited 2011 20/09/2011].Google Scholar
  137. 137.
    Min S, DeJesus E, McCurdy L, et al. Early Studies Demonstrate Potent Activity and Safety of Experimental Integrase Inhibitor S/GSK1265744, in 49th Interscience Conference on Antimicrobials and Chemotherapy. 2009: San Francisco, USA.Google Scholar
  138. 138.
    Cherepanov P. Integrase illuminated. EMBO Rep. 2010;11(5):328.PubMedCrossRefGoogle Scholar
  139. 139.
    Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor Dolutegravir (S/GSK1349572). Mol Pharmacol. 2011;80(4):565–72.PubMedCrossRefGoogle Scholar
  141. 141.
    Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A. 2010;107(36):15910–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Cherepanov P, Maertens GN, Hare S. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol. 2011;21(2):249–56.PubMedCrossRefGoogle Scholar
  143. 143.
    Hall LH. A structure-information approach to the prediction of biological activities and properties. Chem Biodivers. 2004;1(1):183–201.PubMedCrossRefGoogle Scholar
  144. 144.
    Liao C, Nicklaus MC. Computer tools in the discovery of HIV-1 integrase inhibitors. Future Med Chem. 2010;2(7):1123–40.PubMedCrossRefGoogle Scholar
  145. 145.
    Egbertson MS, Wai JS, Cameron M, Hoerrner RS. In: Kazmierski WM, editor. Discovery of MK-0536: A potential second-generation HIV-1 integrase strand transfer inhibitor with a high genetic barrier to mutation, in antiviral drugs: From basic discovery through clinical trials. Hoboken: Wiley; 2011.Google Scholar
  146. 146.
    Métifiot M, Johnson B, Smith S, Zhao XZ, Marchand C, Burke T, et al. MK-0536 inhibits HIV-1 integrases resistant to raltegravir. Antimicrob Agents Chemother, 2011.Google Scholar
  147. 147.
    LLC, I., Terephthalamate compounds and compositions, and their use as HIV integrase inhibitors. 2007.Google Scholar
  148. 148.
    Pace P, Di Francesco ME, Gardelli C, Harper S, Muraglia E, Nizi E, et al. Dihydroxypyrimidine-4-carboxamides as novel potent and selective HIV integrase inhibitors. J Med Chem. 2007;50(9):2225–39.PubMedCrossRefGoogle Scholar
  149. 149.
    Muraglia E, Kinzel O, Gardelli C, Crescenzi B, Donghi M, Ferrara M, et al. Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem. 2008;51(4):861–74.PubMedCrossRefGoogle Scholar
  150. 150.
    Telvekar VN, Patel KN. Pharmacophore development and docking studies of the hiv-1 integrase inhibitors derived from N-methylpyrimidones, Dihydroxypyrimidines, and bicyclic pyrimidinones. Chem Biol Drug Des. 2011;78(1):150–60.PubMedCrossRefGoogle Scholar
  151. 151.
    Johnson TW, Tanis SP, Butler SL, Dalvie D, Delisle DM, Dress KR, et al. Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem. 2011;54(9):3393–417.PubMedCrossRefGoogle Scholar
  152. 152.
    Wai JS, Kim B, Fisher TE, Zhuang L, Embrey MW, Williams PD, et al. Dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors. Bioorg Med Chem Lett. 2007;17(20):5595–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Toropova AP, Toropov AA, Benfenati E, Gini G. Simplified molecular input-line entry system and International Chemical Identifier in the QSAR analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Chem Biol Drug Des. 2011;77(5):343–60.PubMedCrossRefGoogle Scholar
  154. 154.
    Nagasawa JY, Song J, Chen H, Kim HW, Blazel J, Ouk S, et al. 6-Benzylamino 4-oxo-1,4-dihydro-1,8-naphthyridines and 4-oxo-1,4-dihydroquinolines as HIV integrase inhibitors. Bioorg Med Chem Lett. 2011;21(2):760–3.PubMedCrossRefGoogle Scholar
  155. 155.
    Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z. Cellular co-factors of HIV-1 integration. Trends Biochem Sci. 2006;31(2):98–105.PubMedCrossRefGoogle Scholar
  156. 156.
    Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology. 2011;8:52.PubMedCrossRefGoogle Scholar
  157. 157.
    Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J, Koh Y, et al. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J Biol Chem. 2011;286(23):21013–22.PubMedCrossRefGoogle Scholar
  158. 158.
    Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C, Di Fenza A, et al. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology. 2010;7:18.PubMedCrossRefGoogle Scholar
  159. 159.
    Buzon MJ, Seiss K, Weiss R, Brass AL, Rosenberg ES, Pereyra F, et al. Inhibition of HIV-1 Integration in Ex Vivo-Infected CD4 T Cells from Elite Controllers. J Virol. 2011;85(18):9646–50.PubMedCrossRefGoogle Scholar
  160. 160.
    Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 2010;6(6):442–8.PubMedCrossRefGoogle Scholar
  161. 161.
    McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, et al. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol. 2011;410(5):811–30.PubMedCrossRefGoogle Scholar
  162. 162.
    De Luca L, Ferro S, Gitto R, Barreca ML, Agnello S, Christ F, et al. Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg Med Chem. 2010;18(21):7515–21.PubMedCrossRefGoogle Scholar
  163. 163.
    Madlala P, Gijsbers R, Christ F, Hombrouck A, Werner L, Mlisana K, et al. Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression. AIDS. 2011;25(14):1711–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Meehan AM, Saenz DT, Morrison J, Hu C, Peretz M, Poeschla EM. LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol. 2011;85(7):3570–83.PubMedCrossRefGoogle Scholar
  165. 165.
    De Luca L, Ferro S, Morreale F, Chimirri A. Inhibition of the interaction between HIV-1 integrase and its cofactor LEDGF/p75: a promising approach in anti-retroviral therapy. Mini Rev Med Chem. 2011;11(8):714–27.PubMedCrossRefGoogle Scholar
  166. 166.
    De Luca L, Ferro S, Morreale F, De Grazia S, Chimirri A. Inhibitors of the interactions between HIV-1 IN and the cofactor LEDGF/p75. ChemMedChem. 2011;6(7):1184–91.PubMedCrossRefGoogle Scholar
  167. 167.
    Fenwick C, Bethell R, Cordingley M, Edwards P, Quinson A-M, Robinson P, et al. BI 224436, a Non-Catalytic Site Integrase Inhibitor, is a potent inhibitor of the replication of treatment-naïve and raltegravir-resistant clinical isolates of HIV-1. in 51st Interscience Conference on Antimicrobials and Chemotherapy. 2011. Chicago, IL, USA.Google Scholar
  168. 168.
    Aslanyan S, Ballow C, Sabo JP, Habeck J, Roos D, MacGregor TR, et al. Safety and pharmacokinetics (PK) of single rising oral doses of a novel HIV integrase inhibitor in healthy volunteers. in 51st Interscience Conference on Antimicrobials and Chemotherapy. 2011. Chicago, IL, USAGoogle Scholar
  169. 169.
    Tang J, Maddali K, Dreis CD, Sham YY, Vince R, Pommier Y, et al. N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase. ACS Med Chem Lett. 2011;2(1):63–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang Z, Tang J, Salomon CE, Dreis CD, Vince R. Pharmacophore and structure-activity relationships of integrase inhibition within a dual inhibitor scaffold of HIV reverse transcriptase and integrase. Bioorg Med Chem. 2010;18(12):4202–11.PubMedCrossRefGoogle Scholar
  171. 171.
    Di Santo R. Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. Curr Med Chem. 2011;18(22):3335–42.PubMedCrossRefGoogle Scholar
  172. 172.
    Brenner BG, Lowe M, Moisi D, Hardy I, Gagnon S, Charest H, et al. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J Med Virol. 2011;83(5):751–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Loizidou EZ, Kousiappa I, Zeinalipour-Yazdi CD, Van de Vijver DA, Kostrikis LG. Implications of HIV-1 M group polymorphisms on integrase inhibitor efficacy and resistance: genetic and structural in silico analyses. Biochemistry. 2009;48(1):4–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Malet I, Fourati S, Charpentier C, Morand-Joubert L, Armenia D, Wirden M, et al. The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype. J Antimicrob Chemother, 2011.Google Scholar
  175. 175.
    Dicker IB, Terry B, Lin Z, Li Z, Bollini S, Samanta HK, et al. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors. J Biol Chem. 2008;283(35):23599–609.PubMedCrossRefGoogle Scholar
  176. 176.
    Hazuda DJ. Resistance to inhibitors of the human immunodeficiency virus type 1 integration. Braz J Infect Dis. 2010;14(5):513–8.PubMedGoogle Scholar
  177. 177.
    Shafer RW. Rationale and uses of a public HIV drug-resistance database. J Infect Dis. 2006;194 Suppl 1:S51–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Peter K. Quashie
    • 1
    • 2
  • Thibault Mesplède
    • 1
  • Mark A. Wainberg
    • 1
    • 2
    • 3
    • 4
  1. 1.McGill University AIDS Centre, Lady Davis for Medical ResearchJewish General HospitalMontrealCanada
  2. 2.Division of Experimental MedicineFaculty of Medicine, McGill UniversityMontrealCanada
  3. 3.Department of Microbiology and ImmunologyFaculty of Medicine, McGill UniversityMontrealCanada
  4. 4.McGill University AIDS CentreJewish General HospitalMontrealCanada

Personalised recommendations