Advertisement

Current Infectious Disease Reports

, Volume 13, Issue 1, pp 83–93 | Cite as

The Rapidly Evolving Research on Vitamin D Among HIV-Infected Populations

  • Edgar Turner OvertonEmail author
  • Michael T. Yin
Article

Abstract

With ongoing improvement in antiretroviral therapy, mortality among HIV-infected persons has dramatically decreased. For HIV-infected persons who remain engaged in care on suppressive therapy, life expectancy approaches that of the general population. Additionally, we have seen increases in comorbidities traditionally associated with aging: diabetes, hypertension, dyslipidemia, ischemic heart disease, and osteoporosis. Vitamin D deficiency has also been identified as a highly prevalent entity among HIV-infected populations. The association of vitamin D deficiency with several of these comorbidities and its impact on immune function provide the impetus for well-designed studies to evaluate the impact of vitamin D supplementation on HIV disease and antiretroviral therapy. This review summarizes the role of vitamin D in several disease states that are prevalent among HIV populations, with a specific focus on bone health and the interactions with antiretroviral medications.

Keywords

HIV AIDS Vitamin D Bone health 

Notes

Disclosure

Conflicts of interest: E. Overton—grants from the Centers for Disease Control and Prevention, National Institutes of Health, GlaxoSmithKline, Tibotec, and Gilead, and honoraria from Boehringer Ingelheim, Bristol-Meyers Squibb, GlaxoSmithKline/Viiv, Tibotec, Gilead, Merck, and Monogram Sciences; M. Yin—grants from the National Institutes of Health, Gilead, and Bristol-Meyers Squibb, and honoraria from Gilead.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Palella FJ, Baker RK, Moorman AC, et al.: Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006 Sep;43(1):27–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Lampe FC, Smith CJ, Madge S, et al.: Success of clinical care for human immunodeficiency virus infection according to demographic group among sexually infected patients in a routine clinic population, 1999 to 2004. Arch Intern Med. 2007 Apr 9;167(7):692–700.CrossRefPubMedGoogle Scholar
  3. 3.
    Bhavan KP, Kampalath VN, Overton ET: The aging of the HIV epidemic. Curr HIV/AIDS Rep. 2008;5(3):150–158.CrossRefPubMedGoogle Scholar
  4. 4.
    Tebas P, Powderly WG, Claxton S, et al.: Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 2000;14:F63–F67.CrossRefPubMedGoogle Scholar
  5. 5.
    Brown TT, Qaqish RB: Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20:2165–2174.CrossRefPubMedGoogle Scholar
  6. 6.
    • Triant VA, Brown TT, Lee H, Grinspoon SK: Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008 Sep;93(9):3499–3504. This article is the first research paper to illustrate that the low bone mineral density among HIV-infected persons leads to fragility fractures. CrossRefPubMedGoogle Scholar
  7. 7.
    • McComsey GA, Tebas P, Shane E, et al.: Bone Disease in HIV: A Practical Review and Recommendations for HIV Providers. CID. 2010;51:937–946. This article is a recent review of issues related to bone health for HIV care providers. CrossRefGoogle Scholar
  8. 8.
    Hess AF, Unger LF: The cure of infantile rickets by sunlight. JAMA. 1921;77(1):39–41.Google Scholar
  9. 9.
    Chalmers J, Conacher WDH, Garnder DL, Scott PJ: Osteomalacia: a common disease in elderly women. J Bone Joint Surg Br. 1967;49(3):403–423.PubMedGoogle Scholar
  10. 10.
    Holick MF: Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281.CrossRefPubMedGoogle Scholar
  11. 11.
    Heaney RP: The case for improving vitamin D status. J Steroid Biochem Mol Biol 2007;103(3–5):635–641.CrossRefPubMedGoogle Scholar
  12. 12.
    Lips P, Duong T, Oleksik A, et al.: A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab. 2001;86:1212–1221.CrossRefPubMedGoogle Scholar
  13. 13.
    Holick MF: Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006;116:2062–2072.CrossRefPubMedGoogle Scholar
  14. 14.
    Dawson-Hughes B, Harris SS, Krall EA, Dallal GE: Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997;337:670–676.CrossRefPubMedGoogle Scholar
  15. 15.
    Holick MF: High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006 Mar;81(3):353–373.CrossRefPubMedGoogle Scholar
  16. 16.
    Broe KE, Chen TC, Weinberg J, et al.: A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc. 2007 Feb;55(2):234–239.CrossRefPubMedGoogle Scholar
  17. 17.
    Gloth FM III, Alam W, Hollis B: Vitamin D vs. broad spectrum phototherapy in the treatment of seasonal effective disorder. J Nutr Health Aging 1999;3:5–7.PubMedGoogle Scholar
  18. 18.
    Wilkins CH, Birge SJ, Sheline YI, Morris JC: Vitamin D deficiency is associated with worse cognitive performance and lower bone density in older African Americans. J Natl Med Assoc. 2009 Apr;101(4):349–354.PubMedGoogle Scholar
  19. 19.
    Evatt ML, Delong MR, Khazai N, et al.: Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008 Oct;65(10):1348–1352.CrossRefPubMedGoogle Scholar
  20. 20.
    Pittas AG, Lau J, Hu FB, Dawson-Hughes B: The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007 Jun;92(6):2017–2029.CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson JA, Grande JP, Roche PC, Kumar R: Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol. 1994;267:E356–E360.PubMedGoogle Scholar
  22. 22.
    Bland R, Markovic D, Hills CE, et al.: Expression of 25-hydroxyvitamin D3–1-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89–90:121–125.CrossRefPubMedGoogle Scholar
  23. 23.
    Hypponen E, Laara E, Reunanen A, et al.: Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500–1503.CrossRefPubMedGoogle Scholar
  24. 24.
    Orwoll E, Riddle M, Prince M: Effects of vitamin D on insulin and glucagon secretion in non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1994;59:1083–1087.PubMedGoogle Scholar
  25. 25.
    Pittas AG, Harris SS, Stark PC, Dawson-Hughes B: The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in non-diabetic adults. Diabetes Care. 2007;30:980–986.CrossRefPubMedGoogle Scholar
  26. 26.
    Pittas AG, Dawson-Hughes B, Li T, et al.: Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 2006;29:650–656.CrossRefPubMedGoogle Scholar
  27. 27.
    Zittermann A: Vitamin D and disease prevention with special reference to cardiovascular disease. Prog Biophys Mol Biol 2006;92:39–48.CrossRefPubMedGoogle Scholar
  28. 28.
    Pérez-López FR: Vitamin D metabolism and cardiovascular risk factors in postmenopausal women. Maturitas. 2009 Mar 20;62(3):248–262.CrossRefPubMedGoogle Scholar
  29. 29.
    Heaney R, Dowell M, Hale C, Bendich A: Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr. 2003;22:142–146.PubMedGoogle Scholar
  30. 30.
    Li YC: Vitamin D regulation of the renin-angiotensin system. J Cell Biochem 2003;88:327–331.CrossRefPubMedGoogle Scholar
  31. 31.
    Rostand SG: Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 1997;30:150–156.PubMedGoogle Scholar
  32. 32.
    Krause R, Buhring M, Hopfenmuller W, et al.: Ultraviolet B and blood pressure. Lancet 1998;352:709–710.CrossRefPubMedGoogle Scholar
  33. 33.
    Giovannucci E, Liu Y, Rimm EB, et al.: Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst 2006;98:451–459.CrossRefPubMedGoogle Scholar
  34. 34.
    Deluca HF, Cantorna MT: Vitamin D: its role and uses in immunology. FASEB J. 2001 Dec;15(14):2579–2585.CrossRefPubMedGoogle Scholar
  35. 35.
    Cantorna MT, Zhu Y, Froicu M, Wittke A: Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 2004;80:Suppl 6:1717S–1720S.PubMedGoogle Scholar
  36. 36.
    Cantorna MT, Hullett DA, Redaelli C, et al.: 1,25-Dihydroxyvitamin D3 prolongs graft survival without compromising host resistance to infection or bone mineral density. Transplantation. 1998 Oct 15;66(7):828–831.CrossRefPubMedGoogle Scholar
  37. 37.
    Bodnar LM, Simhan HN, Powers RW, et al.: High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 2007;137(2):447–452PubMedGoogle Scholar
  38. 38.
    Gordon CM, DePeter KC, Feldman HA, et al.: Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 2004;158:531–537.CrossRefPubMedGoogle Scholar
  39. 39.
    Ginde AA, Liu MC, Camaargo CA: Demographic Differences and Trends of Vitamin D Insifficiency in the US Population, 1988–2004. Arch Intern Med. 2009; 626–632.Google Scholar
  40. 40.
    Guaraldi G, Orlando G, Squillace N, et al.: Prevalence of secondary causes of osteoporosis among HIV-infected individuals, Antiviral Therapy. 2006; 11(7):L9.Google Scholar
  41. 41.
    Rodríguez M, Daniels B, Gunawardene S, Robbins GK: High frequency of vitamin D deficiency in ambulatory HIV-Positive patients. AIDS Res Hum Retroviruses. 2009 Jan;25(1):9–14.CrossRefPubMedGoogle Scholar
  42. 42.
    • Dao CN, Patel P, Overton ET, et al., and the Study to Understand the Natural History of HIV and AIDS in the Era of Effective Therapy (SUN) Investigators: Prevalence of and risk factors for low levels of vitamin D in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis, in press. This article provides recent data comparing vitamin D levels among HIV-infected and HIV-negative persons in the United States. Google Scholar
  43. 43.
    • Stein EM, Yin MT, McMahon DJ, et al.: Vitamin D deficiency in HIV-infected postmenopausal Hispanic and African-American women. Osteoporos Int 2010 (Epub ahead of print). This article provides recent data highlighting the epidemic of vitamin D deficiency among postmenopausal women in the United States. Google Scholar
  44. 44.
    Yin MT, Lu D, Cremers S, et al.: Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr. 2010 Feb 1;53(2):202–208.CrossRefPubMedGoogle Scholar
  45. 45.
    Bang UC, Shakar SA, Hitz MF, et al.: Deficiency of 25-hydroxyvitamin D in male HIV-positive patients: a descriptive cross-sectional study. Scand J Infect Dis. 2010 Apr;42(4):306–310.CrossRefPubMedGoogle Scholar
  46. 46.
    Borderi M, Vescini F, Cozzi-Lepri A, et al.: 2010 Prevalence of hypovitaminosis D among HIV + patients enrolled in a large Italian cohort. Presented at the 17th Conference on Retroviruses and Opportunistic Infections; San Francisco, CA; February 16–19, 2010.Google Scholar
  47. 47.
    Mueller NJ, Fux CA, Ledergerber B, et al.: High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. AIDS. 2010 May 15;24(8):1127–1134.CrossRefPubMedGoogle Scholar
  48. 48.
    Welz T, Childs K, Ibrahim F, et al.: Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. AIDS. 2010 Jul 31;24(12):1923–1928.CrossRefPubMedGoogle Scholar
  49. 49.
    Van Den Bout-Van Den Beukel CJ, Fievez L, Michels M, et al.: Vitamin D deficiency among HIV type 1-infected individuals in the Netherlands: effects of antiretroviral therapy. AIDS Res Hum Retroviruses. 2008 Nov;24(11):1375–1382.Google Scholar
  50. 50.
    Christakos S, Ajibade DV, Dhawan P, et al.: Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010 Jun;39(2):243–253.CrossRefPubMedGoogle Scholar
  51. 51.
    Madeddu G, Spanu A, Solinas P, et al.: Bone mass loss and vitamin D metabolism impairment in HIV patients receiving highly active antiretroviral therapy. Q J Nucl Med Mol Imaging 2004; 48(1):39–48.PubMedGoogle Scholar
  52. 52.
    Fernandez-Rivera J, Garcia R, Lozano F, et al.: Relationship between low bone mineral density and highly active antiretroviral therapy including protease inhibitors in HIV-infected patients. HIV Clin Trials 2003; 4(5):337–346.CrossRefPubMedGoogle Scholar
  53. 53.
    McComsey GA, Kitch D, Daar E, et al.: Bone and limb fat outcomes of ACTG A5224s, a substudy of ACTG A5202: a prospective, randomized, partially blinded phase III trial of ABC/3TC or TDF/FTC with EFV or ATV/r for initial treatment of HIV-1 infection [abstract 106LB]. In: Program and abstracts of the 17th Conference on Retroviruses and Opportunistic Infections February 16–19, 2010, San Francisco, CA.Google Scholar
  54. 54.
    Duvivier C, Kolta S, Assoumou L, et al.: Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 2009; 23(7):817–824.CrossRefPubMedGoogle Scholar
  55. 55.
    Cozzolino M, Vidal M, Vittoria Arcidiacono M, et al.: HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS 2003; 17:513–520.CrossRefPubMedGoogle Scholar
  56. 56.
    Gyllensten K, Josephson F, Lidman K, Saaf M: Severe vitamin D deficiency diagnosed after introduction of antiretroviral therapy including efavirenz in a patient living at latitude 59N. AIDS 2006; 20(14):1906–1907.CrossRefPubMedGoogle Scholar
  57. 57.
    Fabbriciani G, De Socio GV: Efavirenz and bone health. AIDS 2009; 23(9):1181.CrossRefPubMedGoogle Scholar
  58. 58.
    Herzmann C, Arasteh K: Efavirenz-induced osteomalacia. AIDS 2009; 23(2):274–275.CrossRefPubMedGoogle Scholar
  59. 59.
    • Brown TT, McComsey GA: Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15(3):425–429. The authors highlight the impact of various antiretroviral agents on vitamin D metabolism. CrossRefPubMedGoogle Scholar
  60. 60.
    Welz T, Childs K, Ibrahim F, et al.: Efavirenz use is associated with severe vitamin D deficiency in a large, ethnically diverse urban UK HIV cohort. Program and Abstracts of 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention. Cape Town, South Africa; 2009.Google Scholar
  61. 61.
    Fox J, Peters B, Prakash M, et al.: Improvement in vitamin D deficiency following antiretroviral regime change: results from the MONET trial. AIDS Res Hum Retroviruses. 2010 (Epub ahead of print).Google Scholar
  62. 62.
    Valsamis HA, Arora SK, Labban B, McFarlane SI: Antiepileptic drugs and bone metabolism. Nutr Metab (Lond) 2006; 3:36.CrossRefGoogle Scholar
  63. 63.
    Pascussi JM, Robert A, Nguyen M, et al.: Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest 2005; 115:177–186.PubMedGoogle Scholar
  64. 64.
    Lattuada E, Lanzafame M, Zoppini G, et al.: No influence of nevirapine on vitamin D deficiency in HIV-infected patients. AIDS Research and Human Retroviruses 2009; 25(8):849–850.CrossRefPubMedGoogle Scholar
  65. 65.
    Cervero M, Alcazar V, Garcia-LaCalle C, et al.: Prevalence of vitamin D deficiency in HIV infection. Abstract H-230. ICAAC 2010; Boston, MA.Google Scholar
  66. 66.
    Pasquet A, Viget N, Choisy P, et al.: Prevalence and risk factors for hypovitaminosis D among HIV-infected patients in a French HIV Clinical Cohort. Abstracts H-225. ICAAC 2010; Boston, MA.Google Scholar
  67. 67.
    Gallant JE, Staszewski S, Pozniak AL, et al.: Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral naive patients: a 3-year randomized trial. JAMA. 2004; 292(2):191–201.CrossRefPubMedGoogle Scholar
  68. 68.
    Cooper DA, Bloch M, Humphries A, et al.: Simplification with fixed dose tenofovir-emtricitaine or abacavir-lamivudine in adults with suppressed HIV repliation (The Steal Study): A randomized, open-label, 96-week, non-inferiority trial [abstract 576]. In Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections February 8–11, 2009, Montreal, Canada.Google Scholar
  69. 69.
    Labarga P, Barreiro P, Martin-Carbonero L, et al.: Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. AIDS. 2009 Mar 27;23(6):689–696.CrossRefPubMedGoogle Scholar
  70. 70.
    Fux CA, Rauch A, Simcock M, et al.: Swiss HIV Cohort Study. Tenofovir use is associated with an increase in serum alkaline phosphatase in the Swiss HIV Cohort Study. Antivir Ther. 2008;13(8):1077–1082.Google Scholar
  71. 71.
    Rosenvinge MM, Gedela K, Copas AJ, et al.: Tenofovir-linked hyperparathyroidism is independently associated with the presence of vitamin D deficiency. J Acquir Immune Defic Syndr. 2010 Aug 15;54(5):496–499.CrossRefPubMedGoogle Scholar
  72. 72.
    Clarke BL, Wynne AG, Wilson DM, Fitzpatrick LA: Osteomalacia associated with adult Fanconi's syndrome: clinical and diagnostic features. Clin Endocrinol (Oxf). 1995;43(4):479–490.CrossRefGoogle Scholar
  73. 73.
    Overton ET, Mondy K, Bush T, et al.: Factors Associated with Low Bone Mineral Density in a Large Cohort of HIV-infected US Adults: Baseline Results from the SUN Study. Proceedings of the 14th Conference on Retroviruses and Opportunistic Infections 2007. Los Angeles, CA: Abstract 836.Google Scholar
  74. 74.
    Arnsten JH, Freeman R, Howard AA, et al.: Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS. 2007;21(5):617–623.CrossRefPubMedGoogle Scholar
  75. 75.
    Dao C, Young B, Buchacz K, et al., and the HIV Outpatient Study Investigators: Higher and Increasing Rates of Fracture among HIV-infected Persons in the HIV Outpatient Study Compared to the General US Population, 1994 to 2008. Abstract 128. In: Program and abstracts of the 17th Conference on Retroviruses and Opportunistic Infections February 16–19, 2010, San Francisco, CA.Google Scholar
  76. 76.
    Womack J, Goulet J, Gibert C, et al., and Veterans Aging Cohort Project Team: HIV-Infection and Fragility Fracture Risk among Male Veterans. Abstract 129. In: Program and abstracts of the 17th Conference on Retroviruses and Opportunistic Infections February 16–19, 2010, San Francisco, CA.Google Scholar
  77. 77.
    Tebas P, Umbleja T, Dubé M, et al.: Initiation of ART Is Associated with Bone Loss Independent of the Specific ART Regimen. The Results of ACTG A5005s Proceedings of the 14th Conference on Retroviruses and Opportunistic Infections 2007. Los Angeles, CA: Abstract 837.Google Scholar
  78. 78.
    • Grund B, Peng G, Gibert CL, et al.; INSIGHT SMART Body Composition Substudy Group: Continuous antiretroviral therapy (ART) decreases bone mineral density. AIDS. 2009 Jul 31;23(12):1519–1529. This article provides data from the SMART study highlighting the negative impact of cART on bone health. CrossRefPubMedGoogle Scholar
  79. 79.
    Mondy K, Powderly WG, Claxton SA, et al.: Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38(4):426–431.CrossRefPubMedGoogle Scholar
  80. 80.
    McComsey GA, Kendall MA, Tebas P, et al.: Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21(18):2473–2482.CrossRefPubMedGoogle Scholar
  81. 81.
    Schneider JP: Bisphosphonates and low-impact femoral fractures: current evidence on alendronate-fracture risk. Geriatrics. 2009 Jan;64(1):18–23.PubMedGoogle Scholar
  82. 82.
    Strampel W, Emkey R, Civitelli R: Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf. 2007;30(9):755–763.CrossRefPubMedGoogle Scholar
  83. 83.
    Shane E, Burr D, Ebeling PR, et al.: Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2010 (Epub ahead of print).Google Scholar
  84. 84.
    Buitrago C, Boland R, de Boland AR: The tyrosine kinase c-Src is required for 1,25(OH)2-vitamin D3 signalling to the nucleus in muscle cells. Biochim Biophys Acta. 2001 Dec 19;1541(3):179–187.CrossRefPubMedGoogle Scholar
  85. 85.
    Buitrago C, Vazquez G, De Boland AR, Boland R: The vitamin D receptor mediates rapid changes in muscle protein tyrosine phosphorylation induced by 1,25(OH)(2)D(3). Biochem Biophys Res Commun. 2001 Dec 21;289(5):1150–1156.CrossRefPubMedGoogle Scholar
  86. 86.
    Kumar V, Mukhopadhyay S, Singh Bedi P, et al.: A novel modulatory role of vitamin D3 in exercise-induced apoptosis of rat skeletal muscle. Am J Food Technol 2008; 3: 361–372.CrossRefGoogle Scholar
  87. 87.
    Boland R: Role of vitamin D in skeletal muscle function. Endocr Rev. 1986 Nov;7(4):434–448.CrossRefPubMedGoogle Scholar
  88. 88.
    Yoshikawa S, Nakamura T, Tanabe H, Imamura T: Osteomalacic myopathy. Endocrinol Jpn. 1979 Jun;26(Suppl):65–72.PubMedGoogle Scholar
  89. 89.
    Sato Y, Iwamoto J, Kanoko T, Satoh K: Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.CrossRefPubMedGoogle Scholar
  90. 90.
    • Ceglia L: Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care. 2009 Nov;12(6):628–633. This article provides a comprehensive review of effects of vitamin D on muscle health. CrossRefPubMedGoogle Scholar
  91. 91.
    Dam TT, von Mühlen D, Barrett-Connor EL: Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporos Int. 2009 May;20(5):751–760.CrossRefPubMedGoogle Scholar
  92. 92.
    Kuchuk NO, Pluijm SM, van Schoor NM, et al.: Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab. 2009 Apr;94(4):1244–1250.CrossRefPubMedGoogle Scholar
  93. 93.
    El-Hajj Fuleihan G, Nabulsi M, Tamim H, et al.: Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006 Feb;91(2):405–412.CrossRefPubMedGoogle Scholar
  94. 94.
    Bischoff HA, Stähelin HB, Dick W, et al.: Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003 Feb;18(2):343–351.CrossRefPubMedGoogle Scholar
  95. 95.
    Pfeifer M, Begerow B, Minne HW, et al.: Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009 Feb;20(2):315–322.CrossRefPubMedGoogle Scholar
  96. 96.
    Bischoff-Ferrari HA, Willett WC, Wong JB, et al.: Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005 May 11;293(18):2257–2264.CrossRefPubMedGoogle Scholar
  97. 97.
    Brown TT, Cole SR, Li X, et al.: Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165:1179–1184.CrossRefPubMedGoogle Scholar
  98. 98.
    Justman JE, Benning L, Danoff A, et al.: Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr. 2003;32:298–302.CrossRefPubMedGoogle Scholar
  99. 99.
    Tebas P: Insulin resistance and diabetes mellitus associated with antiretroviral use in HIV-infected patients: pathogenesis, prevention, and treatment options. J Acquir Immune Defic Syndr. 2008 Sep 1;49 Suppl 2:S86–S92.PubMedGoogle Scholar
  100. 100.
    Rosen CJ, Klibanski A: Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009 May;122(5):409–414.CrossRefPubMedGoogle Scholar
  101. 101.
    Hamrick MW, Ferrari SL: Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 2008 Jul;19(7):905–912.CrossRefPubMedGoogle Scholar
  102. 102.
    Ducy P, Amling M, Takeda S, et al.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000 Jan 21;100(2):197–207.CrossRefPubMedGoogle Scholar
  103. 103.
    Lee NK, Sowa H, Hinoi E, et al.: Endocrine regulation of energy metabolism by the skeleton. Cell. 2007 Aug 10;130(3):456–469.CrossRefPubMedGoogle Scholar
  104. 104.
    Mathieu C, Casteels K, Waer M, et al.: Prevention of diabetes recurrence after syngeneic islet transplantation in NOD mice by analogues of 1,25(OH)2D3 in combination with cyclosporin A: mechanism of action involves an immune shift from Th1 to Th2. Transplant Proc. 1998 Mar;30(2):541.CrossRefPubMedGoogle Scholar
  105. 105.
    Jamieson BD, Douek DC, Killian S, et al.: Generation of functional thymocytes in the human adult. Immunity 1999;10:569–575.CrossRefPubMedGoogle Scholar
  106. 106.
    Aldrovandi GM, Feuer G, Gao L, et al.: The SCID-hu mouse as a model for HIV-1 infection. Nature 1993;363:732–736.CrossRefPubMedGoogle Scholar
  107. 107.
    Appay V, Rowland-Jones SL: Premature ageing of the immune system: the cause of AIDS? Trends in Immunology 2002; 23 (12): 580–585.CrossRefPubMedGoogle Scholar
  108. 108.
    Luciano AA, Lederman MM, Valentin-Torres A, et al.: Impaired induction of CD27 and CD28 predicts naïve CD4 T cell proliferation defects in HIV disease. J Immunol. 2007; 179 (6): 3543–3549.PubMedGoogle Scholar
  109. 109.
    Arpadi SM, McMahon D, Abrams EJ, et al.: Effect of bimonthly supplementation with oral cholecalciferol on serum 25-hydroxyvitamin D concentrations in HIV-infected children and adolescents. Pediatrics. 2009 Jan;123(1):e121-6. Erratum in: Pediatrics. 2009 May;123(5):1437.CrossRefPubMedGoogle Scholar
  110. 110.
    Mehta S, Giovannucci E, Mugusi FM, et al.: Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS One. 2010 Jan 19;5(1):e8770.CrossRefPubMedGoogle Scholar
  111. 111.
    Mehta S, Hunter DJ, Mugusi FM, et al.: Perinatal outcomes, including mother-to-child transmission of HIV, and child mortality and their association with maternal vitamin D status in Tanzania. J Infect Dis. 2009 Oct 1;200(7):1022–1030.CrossRefPubMedGoogle Scholar
  112. 112.
    European AIDS Clinical Society: Guidelines: prevention and management of non-infectious co-morbidities in HIV. Available at http://www.europeanaidsclinicalsociety.org/guidelinespdf/2_Non_Infectious_Co_Morbidities_in_HIV.pdf. Accessed September 2010.
  113. 113.
    Aberg JA, Kaplan JE, Libman H, et al.; HIV Medicine Association of the Infectious Diseases Society of America: Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2009 Sep 1;49(5):651–681.CrossRefPubMedGoogle Scholar
  114. 114.
    Holick MF: Vitamin D: Evolutionary, physiological and health perspectives. Curr Drug Targets 2010 (Epub ahead of print).Google Scholar
  115. 115.
    Heaney RP: Vitamin D: criteria for safety and efficacy. Nutr Rev. 2008 Oct;66(10 Suppl 2):S178–S181.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Infectious DiseasesWashington University School of MedicineSt. LouisUSA
  2. 2.Division of Infectious DiseasesColumbia University Medical CenterNew YorkUSA

Personalised recommendations