Current Infectious Disease Reports

, Volume 12, Issue 5, pp 354–360

Early Fluid Resuscitation

Article

Abstract

Solid evidence exists that fluid therapy must be started as a first-line treatment in all patients with septic shock as soon as hypotension is detected, with the goal of rapidly restoring tissue perfusion. Crystalloids or colloids can be used for initial fluid therapy, and albumin should be reserved for patients with patent or supposed hypoalbuminemia. Once fluid administration is started, its effect must be carefully monitored. In the early stages, appropriate monitoring should ensure that fluid resuscitation actually increases cardiac preload, mean arterial pressure, and tissue oxygenation. In later stages, monitoring should help to avoid fluid overload. For this purpose, the end-point of fluid therapy should not be the static values of preload indicators, but rather the disappearance of indicators of preload responsiveness. Finally, the risk of fluid overload must always be kept in mind, especially in case of lung injury.

Keywords

Fluid Fluid responsiveness Fluid resuscitation Sepsis Septic shock Preload Preload responsiveness Crystalloids Colloids Albumin Lung water Pulse pressure variation Passive leg raising End-expiratory occlusion Fluid challenge 

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Dellinger RP: Cardiovascular management of septic shock. Crit Care Med 2003, 31:946–955.CrossRefPubMedGoogle Scholar
  2. 2.
    Rivers E, Nguyen B, Havstad S, et al.: Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001, 345:1368–1377.CrossRefPubMedGoogle Scholar
  3. 3.
    Dellinger RP, Levy MM, Carlet JM, et al.: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008, 36:296–327.CrossRefPubMedGoogle Scholar
  4. 4.
    Martin GS, Moss M, Wheeler AP, et al.: A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 2005, 33:1681–1687.CrossRefPubMedGoogle Scholar
  5. 5.
    Perel P, Roberts I: Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2007, CD000567.Google Scholar
  6. 6.
    Finfer S, Bellomo R, Boyce N, et al.: A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004, 350:2247–2256.CrossRefPubMedGoogle Scholar
  7. 7.
    Verheij J, van Lingen A, Beishuizen A, et al.: Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med 2006, 32:1030–1038.CrossRefPubMedGoogle Scholar
  8. 8.
    Brunkhorst FM, Engel C, Bloos F, et al.: Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008, 358:125–139.CrossRefPubMedGoogle Scholar
  9. 9.
    Wills BA, Nguyen MD, Ha TL, et al.: Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med 2005, 353:877–889.CrossRefPubMedGoogle Scholar
  10. 10.
    Marx G, Cobas Meyer M, Schuerholz T, et al.: Hydroxyethyl starch and modified fluid gelatin maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med 2002, 28:629–635.CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer P, Pernet P, Hejblum G, et al.: Haemodilution induced by hydroxyethyl starches 130/0.4 is similar in septic and non-septic patients. Acta Anaesthesiol Scand 2008, 52:229–235.CrossRefPubMedGoogle Scholar
  12. 12.
    van der Heijden M, Verheij J, van Nieuw Amerongen GP, et al.: Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med 2009, 37:1275–1281.CrossRefPubMedGoogle Scholar
  13. 13.
    Verheij J, van Lingen A, Raijmakers PG, et al.: Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth 2006, 96:21–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Finfer S, Bellomo R, McEvoy S, et al.: Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ 2006, 333:1044.Google Scholar
  15. 15.
    Dickenmann M, Oettl T, Mihatsch MJ: Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis 2008, 51:491–503.CrossRefPubMedGoogle Scholar
  16. 16.
    Schortgen F, Lacherade JC, Bruneel F, et al.: Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 2001, 357:911–916.CrossRefPubMedGoogle Scholar
  17. 17.
    Bunn F, Trivedi D, Ashraf S: Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev 2008, CD001319.Google Scholar
  18. 18.
    Cochrane Injuries Group Albumin Reviewers: Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 1998, 317:235–240.Google Scholar
  19. 19.
    Vincent JL, Navickis RJ, Wilkes MM: Morbidity in hospitalized patients receiving human albumin: a meta-analysis of randomized, controlled trials. Crit Care Med 2004, 32:2029–2038.CrossRefPubMedGoogle Scholar
  20. 20.
    Jacob M, Chappell D, Conzen P, et al.: Small-volume resuscitation with hyperoncotic albumin: a systematic review of randomized clinical trials. Crit Care 2008, 12:R34.CrossRefPubMedGoogle Scholar
  21. 21.
    Dubois MJ, Orellana-Jimenez C, Melot C, et al.: Albumin administration improves organ function in critically ill hypoalbuminemic patients: a prospective, randomized, controlled, pilot study. Crit Care Med 2006, 34:2536–2540.CrossRefPubMedGoogle Scholar
  22. 22.
    Handy JM, Soni N: Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 2008, 101:141–150.CrossRefPubMedGoogle Scholar
  23. 23.
    Boldt J: Saline versus balanced hydroxyethyl starch: does it matter? Curr Opin Anaesthesiol 2008, 21:679–683.CrossRefPubMedGoogle Scholar
  24. 24.
    Oliveira RP, Velasco I, Soriano F, et al.: Clinical review: hypertonic saline resuscitation in sepsis. Crit Care 2002, 6:418–423.CrossRefPubMedGoogle Scholar
  25. 25.
    Garrido Adel P, Cruz RJ Jr, Poli de Figueiredo LF, et al.: Small volume of hypertonic saline as the initial fluid replacement in experimental hypodynamic sepsis. Crit Care 2006, 10:R62.Google Scholar
  26. 26.
    Rahal L, Garrido AG, Cruz RJ Jr, et al.: Fluid replacement with hypertonic or isotonic solutions guided by mixed venous oxygen saturation in experimental hypodynamic sepsis. J Trauma 2009, 67:1205–1212.CrossRefPubMedGoogle Scholar
  27. 27.
    Wade CE: Hypertonic saline resuscitation in sepsis. Crit Care 2002, 6:397–398.CrossRefPubMedGoogle Scholar
  28. 28.
    Monnet X, Teboul JL: Invasive measures of left ventricular preload. Curr Opin Crit Care 2006, 12:235–240.CrossRefPubMedGoogle Scholar
  29. 29.
    Vincent JL, Weil MH: Fluid challenge revisited. Crit Care Med 2006, 34:1333–1337.CrossRefPubMedGoogle Scholar
  30. 30.
    Monnet X, Teboul JL: Volume responsiveness. Curr Opin Crit Care 2007, 13:549–553.CrossRefPubMedGoogle Scholar
  31. 31.
    Chemla D, Hebert JL, Coirault C, et al.: Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 1998, 274:H500–H505.PubMedGoogle Scholar
  32. 32.
    Bourgoin A, Leone M, Delmas A, et al.: Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 2005, 33:780–786.CrossRefPubMedGoogle Scholar
  33. 33.
    LeDoux D, Astiz ME, Carpati CM, et al.: Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 2000, 28:2729–2732.CrossRefPubMedGoogle Scholar
  34. 34.
    Levy B, Gibot S, Franck P, et al.: Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005, 365:871–875.CrossRefPubMedGoogle Scholar
  35. 35.
    Nguyen HB, Rivers EP, Knoblich BP, et al.: Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004, 32:1637–1642.CrossRefPubMedGoogle Scholar
  36. 36.
    •• Jones AE, Shapiro NI, Trzeciak S, et al.: Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 2010 303:739–746. This multicenter randomized trial suggests that monitoring the lactate clearance should be equivalent to monitoring the central venous oxygenation in terms of in-hospital mortality for guiding the early resuscitation of patients with severe sepsis or septic shock.Google Scholar
  37. 37.
    Reinhart K, Kuhn HJ, Hartog C, et al.: Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 2004, 30:1572–1578.CrossRefPubMedGoogle Scholar
  38. 38.
    van Beest PA, Hofstra JJ, Schultz MJ, et al.: The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care 2008, 12:R33.CrossRefPubMedGoogle Scholar
  39. 39.
    Pope JV, Jones AE, Gaieski DF, et al.: Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010 55:40–46 e41.Google Scholar
  40. 40.
    Perel A: Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines—does one size fit all? Crit Care 2008, 12:223.CrossRefPubMedGoogle Scholar
  41. 41.
    Kumar A, Roberts D, Wood KE, et al.: Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006, 34:1589–1596.CrossRefPubMedGoogle Scholar
  42. 42.
    Pottecher T, Calvat S, Dupont H, et al.: Haemodynamic management of severe sepsis: recommendations of the French Intensive Care Societies (SFAR/SRLF) Consensus Conference, 13 October 2005, Paris, France. Crit Care 2006, 10:311.Google Scholar
  43. 43.
    Datta P, Magder S: Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med 1999, 160:1987–1993.PubMedGoogle Scholar
  44. 44.
    De Backer D, Biston P, Devriendt J, et al.: Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010, 362:779–789.CrossRefPubMedGoogle Scholar
  45. 45.
    Vincent JL, Sakr Y, Sprung CL, et al.: Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006, 34:344–353.CrossRefPubMedGoogle Scholar
  46. 46.
    Phillips CR, Chesnutt MS, Smith SM: Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 2008, 36:69–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Sakka SG, Klein M, Reinhart K, et al.: Prognostic value of extravascular lung water in critically ill patients. Chest 2002, 122:2080–2086.CrossRefPubMedGoogle Scholar
  48. 48.
    •• Marik PE, Baram M, Vahid B: Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008, 134:172–178. This article describes a systematic review of 24 studies dealing with fluid responsiveness prediction and central venous pressure. It concludes that central venous pressure does not allow predicting fluid responsiveness or fluid unresponsiveness.Google Scholar
  49. 49.
    Osman D, Ridel C, Ray P, et al.: Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007, 35:64–68.CrossRefPubMedGoogle Scholar
  50. 50.
    Cannesson M, Desebbe O, Rosamel P, et al.: Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008, 101:200–206.CrossRefPubMedGoogle Scholar
  51. 51.
    Monnet X, Teboul JL: Passive leg raising. Intensive Care Med 2008, 34:659–663.CrossRefPubMedGoogle Scholar
  52. 52.
    Monnet X, Rienzo M, Osman D, et al.: Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 2006, 34:1402–1407.CrossRefPubMedGoogle Scholar
  53. 53.
    Monnet X, Osman D, Ridel C, et al.: Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 2009, 37:951–956.CrossRefPubMedGoogle Scholar
  54. 54.
    Teboul JL, Monnet X: Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Crit Care 2009, 13:175.CrossRefPubMedGoogle Scholar
  55. 55.
    Sakka SG, Ruhl CC, Pfeiffer UJ, et al.: Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 2000, 26:180–187.CrossRefPubMedGoogle Scholar
  56. 56.
    Monnet X, Anguel N, Osman D, et al.: Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 2007, 33:448–453.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Service de Réanimation MédicaleHôpital de BicêtreLe Kremlin-BicêtreFrance

Personalised recommendations