Current Infectious Disease Reports

, Volume 12, Issue 4, pp 274–281

Treatment of Drug-resistant Pneumococcal Meningitis

Article

Abstract

The approach to therapy in patients with pneumococcal meningitis has changed considerably over the past 20 years. Given the emergence of pneumococcal strains that are intermediately susceptible or highly resistant to penicillin, penicillin is not recommended as empiric therapy for presumed pneumococcal meningitis; the combination of vancomycin and a third-generation cephalosporin (either cefotaxime or ceftriaxone) should be used, pending isolation of the organism and in vitro susceptibility testing. For patients with pneumococcal meningitis caused by highly penicillin- or cephalosporin-resistant strains, the addition of rifampin can be considered if the organism is susceptible in vitro, the expected clinical or bacteriologic response is delayed, or the pneumococcal isolate has a cefotaxime or ceftriaxone minimal inhibitory concentration greater than 4 μg/mL. Meropenem is not a good option for monotherapy of highly penicillin- or cephalosporin-resistant strains, but use of a fluoroquinolone with in vitro activity against Streptococcus pneumoniae (specifically moxifloxacin) is an option in patients failing standard therapy; if used, however, it should be combined with a third-generation cephalosporin or vancomycin. Newer glycopeptides, daptomycin, and linezolid require further study to determine their efficacy in patients with pneumococcal meningitis.

Keywords

Bacterial meningitis Streptococcus pneumoniae Blood-brain barrier Cerebrospinal fluid Pharmacodynamics Antibiotics Antimicrobial therapy Antibiotic resistance Third-generation cephalosporins Glycopeptides Rifampin Carbapenems Fluoroquinolones Daptomycin Linezolid Dexamethasone 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Tunkel AR, Hartman BJ, Kaplan SL, et al.: Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004, 39:1267–1284.CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention: Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae—United States, 2006–2007. MMWR 2008, 57:1353–1355.Google Scholar
  3. 3.
    • Hsu HE, Shutt KA, Moore MR, et al.: Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med 2009, 360:244–256. This study demonstrated a decrease in the incidence of pneumococcal meningitis in the United States since introduction of the heptavalent pneumococcal conjugate vaccine. Despite the decrease in incidence in meningitis caused by vaccine serotypes, there has been an increase in disease caused by pneumococcal serotypes not represented in the vaccine, some of which are resistant to antimicrobial agents. CrossRefPubMedGoogle Scholar
  4. 4.
    Appelbaum PC: Resistance among Streptococcus pneumoniae: implications for drug selection. Clin Infect Dis 2002, 34:1613–1620.CrossRefPubMedGoogle Scholar
  5. 5.
    Meyer CN, Samuelsson JS, Galle M, et al.: Acute bacterial meningitis: aetiology, penicillin susceptibility, risk factors, prognostic factors and guidelines for empiric antibiotic therapy. Clin Microbiol Infect 2004, 10:709–717.CrossRefPubMedGoogle Scholar
  6. 6.
    Lustar I, McCracken GH Jr: Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis 1998, 27:1117–1129.CrossRefGoogle Scholar
  7. 7.
    Andes DR, Craig WA: Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am 1999, 13:595–618.CrossRefPubMedGoogle Scholar
  8. 8.
    Sinner SW, Tunkel AR: Antimicrobial agents in the treatment of bacterial meningitis. Infect Dis Clin North Am 2004, 18:581–602.CrossRefPubMedGoogle Scholar
  9. 9.
    • Miranda J, Tunkel AR: Strategies and new developments in the management of bacterial meningitis. Infect Dis Clin North Am 2009, 23:925–943. This article provides an updated review of the principles of antimicrobial therapy, including experimental and clinical data on newer agents, in the management of bacterial meningitis.CrossRefPubMedGoogle Scholar
  10. 10.
    Lustar I, Ahmed A, Friedland IR, et al.: Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1997, 41:2414–2417.Google Scholar
  11. 11.
    Viladrich PF, Cabellos C, Pallares R, et al.: High doses of cefotaxime in treatment of adult meningitis due to Streptococcus pneumoniae with decreased susceptibilities to broad spectrum cephalosporins. Antimicrob Agents Chemother 1996, 40:218–220.PubMedGoogle Scholar
  12. 12.
    Gerber CM, Cottagnoud M, Neftel K, et al.: Evaluation of cefepime alone and in combination with vancomycin against penicillin-resistant pneumococci in the rabbit meningitis model and in vitro. J Antimicrob Chemother 2000, 45:63–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Cottagnoud P, Acosta F, Cottagnoud M, et al.: Cefepime is efficacious against penicillin- and quinolone-resistant pneumococci in experimental meningitis. J Antimicrob Chemother 2002, 49:327–330.CrossRefPubMedGoogle Scholar
  14. 14.
    Lodise TP Jr, Nau R, Kinzig M, et al.: Comparison of the probability of target attainment between ceftriaxone and cefepime in the cerebrospinal fluid and serum against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2007, 58:445–452.CrossRefPubMedGoogle Scholar
  15. 15.
    Saez-Llorens X, O’Ryan M: Cefepime in the empiric treatment of meningitis in children. Pediatr Infect Dis J 2001, 20:356–361.CrossRefPubMedGoogle Scholar
  16. 16.
    Ahmed A: A critical evaluation of vancomycin for treatment of bacterial meningitis. Pediatr Infect Dis J 1997, 16:895–903.CrossRefPubMedGoogle Scholar
  17. 17.
    Friedland IR, Paris M, Ehrett S, et al.: Evaluation of antimicrobial regimens for treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1999, 43:2372–2375.Google Scholar
  18. 18.
    Cottagnoud P, Cottagnoud M, Täuber MG: Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob Agents Chemother 2003, 47:144–147.CrossRefPubMedGoogle Scholar
  19. 19.
    Viladrich PF, Gudiol F, Linares J, et al.: Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother 1991, 35:2467–2472.PubMedGoogle Scholar
  20. 20.
    Klugman KP, Friedland IR, Bradley JS: Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother 1995, 39:1988–1992.PubMedGoogle Scholar
  21. 21.
    • Ricard JD, Wolff M, Lacherade JC, et al.: Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenter observational study. Clin Infect Dis 2007, 44:250–255. This study demonstrated that appropriate CSF concentrations can be attained in patients with pneumococcal meningitis treated with adjunctive dexamethasone, provided that appropriate parenteral dosages of vancomycin are administered.CrossRefPubMedGoogle Scholar
  22. 22.
    Ahmed A, Jafri H, Lustar I, et al.: Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1999, 43:876–881.PubMedGoogle Scholar
  23. 23.
    Novak R, Henriques B, Charpentier E, et al.: Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 1999, 399:590–593.CrossRefPubMedGoogle Scholar
  24. 24.
    McCullers JA, English BK: Isolation and characterization of vancomycin-tolerant Streptococcus pneumoniae from the cerebrospinal fluid of a patient who developed recrudescent meningitis. J Infect Dis 2000, 181:369–373.CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez CA, Atkinson R, Bitar W, et al.: Tolerance to vancomycin in pneumococci: detection with a molecular marker and assessment of clinical impact. J Infect Dis 2004, 190:1481–1487.CrossRefPubMedGoogle Scholar
  26. 26.
    • Rybak M, Lomaestro B, Rotschafer JC, et al.: Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm 2009, 66:82–98. This article describes evidence-based guidelines on use of vancomycin in the treatment of serious infections.CrossRefPubMedGoogle Scholar
  27. 27.
    Cabellos AF, Tubau F, Maiques JM, et al.: Experimental study of teicoplanin, alone and in combination, in the therapy of cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemother 2005, 55:78–83.PubMedGoogle Scholar
  28. 28.
    Gerber J, Smirnov A, Wellmer A, et al.: Activity of LY333328 in experimental meningitis caused by a Streptococcus pneumoniae strain susceptible to penicillin. Antimicrob Agents Chemother 2001, 45:2169–2172.CrossRefPubMedGoogle Scholar
  29. 29.
    Cabellos C, Fernandez A, Maiques JM: Experimental study of LY333329 (oritavancin), alone and in combination, in therapy of cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 2003, 47:1907–1911.CrossRefPubMedGoogle Scholar
  30. 30.
    Stucki A, Gerber P, Acosta F, et al.: Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob Agents Chemother 2006, 50:770–773.CrossRefPubMedGoogle Scholar
  31. 31.
    Paris MM, Hickey SM, Uscher MI, et al.: Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1994, 38:1320–1324.PubMedGoogle Scholar
  32. 32.
    Martinez-Lacasa J, Cabellos C, Martos A, et al.: Experimental study of the efficacy of vancomycin, rifampicin and dexamethasone in the therapy of pneumococcal meningitis. J Antimicrob Chemother 2002, 49:507–513.CrossRefPubMedGoogle Scholar
  33. 33.
    Suntur BM, Yurtseven T, Sipahi OR, et al.: Rifampicin + ceftriaxone versus vancomycin + ceftriaxone in the treatment of penicillin- and cephalosporin-resistant pneumococcal meningitis in an experimental rabbit model. Int J Antimicrob Agents 2005, 26:258–260.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee H, Song JH, Kim SW, et al.: Evaluation of a triple drug combination for treatment of experimental multidrug-resistant pneumococcal meningitis. Int J Antimicrob Agents 2004, 23:307–310.PubMedGoogle Scholar
  35. 35.
    Wong VK, Wright HT Jr, Ross LA, et al.: Imipenem/cilastatin treatment of bacterial meningitis in children. Pediatr Infect Dis J 1991, 10:122–125.CrossRefPubMedGoogle Scholar
  36. 36.
    Cottagnoud P, Pfister M, Cottagnoud M, et al.: Activities of ertapenem, a new long acting carbapenem, against penicillin-sensitive or -resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother 2003, 47:1943–1947.CrossRefPubMedGoogle Scholar
  37. 37.
    Force E, Taberner F, Cabellos C, et al.: Experimental study of meropenem in the therapy of cephalosporin-susceptible and -resistant pneumococcal meningitis. Eur J Clin Microbiol Infect Dis 2008, 27:685–690.CrossRefPubMedGoogle Scholar
  38. 38.
    Schmutzhard E, Williams KJ, Vukmirovits G, et al.: A randomized comparison of meropenem with cefotaxime and ceftriaxone for the treatment of bacterial meningitis in adults: meropenem meningitis study group. J Antimicrob Chemother 1995, 36(Suppl A):85–97.PubMedGoogle Scholar
  39. 39.
    Klugman KP, Dagan R: Randomized comparison of meropenem with cefotaxime for treatment of bacterial meningitis. Antimicrob Agents Chemother 1995, 39:1140–1146.PubMedGoogle Scholar
  40. 40.
    Odio CM, Puig JR, Feris JM, et al.: Prospective, randomized, investigator-blinded study of the efficacy and safety of meropenem vs. cefotaxime therapy in bacterial meningitis in children. Pediatr Infect Dis J 1999, 18:581–590.CrossRefPubMedGoogle Scholar
  41. 41.
    John CC, Aouad G, Berman B, et al.: Successful meropenem treatment of multiply resistant pneumococcal meningitis. Pediatr Infect Dis J 1997, 16:1009–1011.CrossRefPubMedGoogle Scholar
  42. 42.
    Buckingham SC, Davis Y, English BK: Pneumococcal susceptibility to meropenem in a mid-south children’s hospital. South Med J 2002, 95:1293–1296.PubMedGoogle Scholar
  43. 43.
    Schmidt H, Dalhoff A, Steurtz K, et al.: Moxifloxacin in the therapy of experimental pneumococcal meningitis. Antimicrob Agents Chemother 1998, 42:1397–1401.PubMedGoogle Scholar
  44. 44.
    Ostergaard C, Sorensen TK, Knudsen JD, et al.: Evaluation of moxifloxacin, a new 8-methoxyquinolone, for treatment of meningitis caused by a penicillin-resistant pneumococcus in rabbits. Antimicrob Agents Chemother 1998, 42:1706–1712.PubMedGoogle Scholar
  45. 45.
    Kanellakopoulou K, Pagoulatou A, Stroumpoulis K, et al.: Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid in humans: implication for a bactericidal effect. J Antimicrob Chemother 2008, 61:1328–1331.CrossRefPubMedGoogle Scholar
  46. 46.
    Cottagnoud P, Cottagnoud M, Acosta F, et al.: Meropenem prevents levofloxacin-induced resistance in penicillin-resistant pneumococci and acts synergistically with levofloxacin in experimental meningitis. Eur J Clin Microbiol Infect Dis 2003, 22:656–662.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuhn F, Cottagnoud M, Acosta F, et al.: Cefotaxime acts synergistically with levofloxacin in experimental meningitis due to penicillin-resistant pneumococci and prevents selection of levofloxacin-resistant mutants in vitro. Antimicrob Agents Chemother 2003, 47:2487–2491.CrossRefPubMedGoogle Scholar
  48. 48.
    Flatz L, Cottagnoud M, Kuhn F, et al.: Ceftriaxone acts synergistically with levofloxacin in experimental meningitis and reduces levofloxacin-induced resistance in penicillin-resistant pneumococci. J Antimicrob Chemother 2004, 53:305–310.CrossRefPubMedGoogle Scholar
  49. 49.
    Saez-Llorens X, McCoig C, Feris JM, et al.: Quinolone treatment for pediatric bacterial meningitis: a comparative study of trovafloxacin and ceftriaxone with or without vancomycin. Pediatr Infect Dis J 2002, 21:14–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Cottagnoud P, Pfister M, Acosta F, et al.: Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother 2004, 48:3928–3933.CrossRefPubMedGoogle Scholar
  51. 51.
    Stucki A, Cottagnoud M, Winkelmann V, et al.: Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall. Antimicrob Agents Chemother 2007, 51:2249–2252.CrossRefPubMedGoogle Scholar
  52. 52.
    Grandgirard D, Schurch C, Cottagnoud P, et al.: Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2007, 51:2173–2178.CrossRefPubMedGoogle Scholar
  53. 53.
    Cottagnoud P, Gerber CM, Acosta F, et al.: Linezolid against penicillin-sensitive and -resistant pneumococci in the rabbit meningitis model. J Antimicrob Chemother 2000, 46:981–985.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MedicineMonmouth Medical CenterLong BranchUSA

Personalised recommendations