Current Infectious Disease Reports

, Volume 12, Issue 3, pp 157–164 | Cite as

Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development

  • Annelies Wilder-Smith
  • Eng-Eong Ooi
  • Subhash G. Vasudevan
  • Duane J. Gubler
Article

Abstract

Dengue virus is the most widespread geographically of the arboviruses and a major public health threat in the tropics and subtropics. Scientific advances in recent years have provided new insights about the pathogenesis of more severe disease and novel approaches into the development of antiviral compounds and dengue vaccines. Phylogenetic studies show an association between specific subtypes (within serotypes) and severity of dengue. The lack of association between maternal antibodies and development of severe dengue in infants in a recent study has called for the rethinking or refinement of the current antibody-dependent enhancement theory of dengue hemorrhagic syndrome in infancy. Such studies should stimulate new directions of research into mechanisms responsible for the development of severe dengue. The life cycle of dengue virus readily shows that virus entry and replication can be targeted by small molecules. Advances in a mouse model (AG 129 mice) have made it easier to test such antiviral compounds. The efforts to find specific dengue inhibitors are intensifying and the tools to evaluate the efficacy of new drugs are now in place for rapid translation into trials in humans. Furthermore, several dengue vaccine candidates are in development, of which the chimeric dengue/yellow fever vaccine has now entered phase 3 trials. Until the availability of a licensed vaccine, disease surveillance and vector population control remain the mainstay of dengue prevention.

Keywords

Dengue Expansion of dengue Dengue serotypes Dengue genotypes Dengue vaccines Dengue antiviral compounds Dengue antiviral therapy Epidemiology of dengue 

Notes

Disclosure

Dr. Wilder-Smith is the principal investigator of a Sanofi Pasteur dengue vaccine trial; received speaker honoraria and reimbursements for travel to conferences by GlaxoSmithKline, Novartis, and Sanofi Pasteur; and has served on the Novartis advisory board for travel vaccines. Dr. Gubler has received honoraria from Novartis Institute of Tropical Diseases, Invivogen, and Hawaii Biotech. No other potential conflict of interest relevant to this article was reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gubler DJ: The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 2002, 33:330–342.CrossRefPubMedGoogle Scholar
  2. 2.
    Halstead SB: Dengue virus-mosquito interactions. Annu Rev Entomol 2008, 53:273–291.CrossRefPubMedGoogle Scholar
  3. 3.
    Effler PV, Pang L, Kitsutani P, et al.: Dengue fever, Hawaii, 2001–2002. Emerg Infect Dis 2005, 11:742–749.PubMedGoogle Scholar
  4. 4.
    •• Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009. These revised and updated WHO guidelines provide updates on epidemiology, the new classification of clinical dengue, and new developments in vaccines and antiviral compounds.Google Scholar
  5. 5.
    Suaya JA, Shepard DS, Siqueira JB, et al.: Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg 2009, 80:846–855.PubMedGoogle Scholar
  6. 6.
    Halstead SB, Udomsakdi S, Simasthien P, et al.: Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses. Yale J Biol Med 1970, 42:261–275.PubMedGoogle Scholar
  7. 7.
    • Wilder-Smith A, Gubler DJ: Geographic expansion of dengue: the impact of international travel. Med Clin North Am 2008, 92:1377–1390. This review article provides a critical discussion about the reasons for the geographic expansion of dengue in recent years.CrossRefPubMedGoogle Scholar
  8. 8.
    Ooi E, Gubler DJ: Global spread of epidemic dengue: the influence of environmental change. Future Virol 2009, 4:571–580.CrossRefGoogle Scholar
  9. 9.
    Cheng S, Kalkstein LS, Focks DA, et al.: New procedures to estimate water temperatures and water depths for application in climate-dengue modeling. J Med Entomol 1998, 35:646–652.PubMedGoogle Scholar
  10. 10.
    Egger JR, Ooi EE, Kelly DW, et al.: Reconstructing historical changes in the force of infection of dengue fever in Singapore: implications for surveillance and control. Bull World Health Organ 2008, 86:187–196.CrossRefPubMedGoogle Scholar
  11. 11.
    Hales S, Weinstein P, Souares Y, et al.: El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect 1999, 107:99–102.CrossRefPubMedGoogle Scholar
  12. 12.
    Schwartz E, Weld LH, Wilder-Smith A, et al.: Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997–2006. Emerg Infect Dis 2008, 14:1081–1088.CrossRefPubMedGoogle Scholar
  13. 13.
    Bartley LM, Donnelly CA, Garnett GP: The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 2002, 96:387–397.CrossRefPubMedGoogle Scholar
  14. 14.
    Ooi EE, Goh KT, Gubler DJ: Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis 2006, 12:887–893.PubMedGoogle Scholar
  15. 15.
    • Cummings DA, Iamsirithaworn S, Lessler JT, et al.: The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med 2009, 6:e1000139. This article highlights the demographic changes in the presentation of dengue.CrossRefPubMedGoogle Scholar
  16. 16.
    Wilder-Smith A, Schwartz E: Dengue in travelers. N Engl J Med 2005, 353:924–932.CrossRefPubMedGoogle Scholar
  17. 17.
    WHO/EMRO World Health Organization, Regional Office for the Eastern Mediterranean, Division of Communicable Disease Control, Newsletter. 2005, 6:7–8.Google Scholar
  18. 18.
    Leroy EM, Nkoghe D, Ollomo B, et al.: Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg Infect Dis 2009, 15:591–593.CrossRefPubMedGoogle Scholar
  19. 19.
    Ninove L, Parola P, Baronti C, et al.: Dengue virus type 3 infection in traveler returning from west Africa. Emerg Infect Dis 2009, 15:1871–1872.CrossRefPubMedGoogle Scholar
  20. 20.
    Kuniholm MH, Wolfe ND, Huang CY, et al.: Seroprevalence and distribution of Flaviviridae, Togaviridae, and Bunyaviridae arboviral infections in rural Cameroonian adults. Am J Trop Med Hyg 2006, 74:1078–1083.PubMedGoogle Scholar
  21. 21.
    Freedman DO, Weld LH, Kozarsky PE, et al.: Spectrum of disease and relation to place of exposure among ill returned travelers. N Engl J Med 2006, 354:119–130.CrossRefPubMedGoogle Scholar
  22. 22.
    Ramos MM, Mohammed H, Zielinski-Gutierrez E, et al.: Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico Border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 2008, 78:364–369.PubMedGoogle Scholar
  23. 23.
    Jelinek T, Mühlberger N, Harms G, et al.: Epidemiology and clinical features of imported dengue fever in Europe: sentinel surveillance data from TropNetEurop. Clin Infect Dis 2002, 35:1047–1052.CrossRefPubMedGoogle Scholar
  24. 24.
    Kitchener S, Leggat PA, Brennan L, McCall B: Importation of dengue by soldiers returning from East Timor to north Queensland, Australia. J Travel Med 2002, 9:180–183.PubMedGoogle Scholar
  25. 25.
    Beebe NW, Cooper RD, Mottram P, et al.: Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 2009, 3:e429.CrossRefPubMedGoogle Scholar
  26. 26.
    Whitehead SS, Blaney JE, Durbin AP, et al.: Prospects for a dengue virus vaccine. Nat Rev Microbiol 2007, 5:518–528.CrossRefPubMedGoogle Scholar
  27. 27.
    Gubler DJ: Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002, 10:100–103.CrossRefPubMedGoogle Scholar
  28. 28.
    Guzman MG, Kouri G: Dengue: an update. Lancet Infect Dis 2002, 2:33–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Vaughn DW, Green S, Kalayanarooj S, et al.: Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 2000, 181:2–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Halstead SB: In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 1979, 140:527–533.PubMedGoogle Scholar
  31. 31.
    Gubler DJ: Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998, 11:480–496.PubMedGoogle Scholar
  32. 32.
    •• Libraty DH, Acosta LP, Tallo V, et al.: A prospective nested case-control study of Dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 2009, 6:e1000171. This study suggests that the ADE theory for DHF in infancy needs to be rethought.CrossRefPubMedGoogle Scholar
  33. 33.
    Rico-Hesse R: Microevolution and virulence of dengue viruses. Adv Virus Res 2003, 59:315–341.CrossRefPubMedGoogle Scholar
  34. 34.
    Gubler DJ, Trent DW: Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis 1993, 2:383–393.PubMedGoogle Scholar
  35. 35.
    Wang E, Ni H, Xu R, et al.: Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 2000, 74:3227–3234.CrossRefPubMedGoogle Scholar
  36. 36.
    Bennett SN, Holmes EC, Chirivella M, et al.: Selection-driven evolution of emergent dengue virus. Mol Biol Evol 2003, 20:1650–1658.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuhn RJ, Zhang W, Rossmann MG, et al.: Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 2002, 108:717–725.CrossRefPubMedGoogle Scholar
  38. 38.
    •• Sessions OM, Barrows NJ, Souza-Neto JA, et al.: Discovery of insect and human dengue virus host factors. Nature 2009, 458:1047–1050. This study identified 116 candidate dengue virus host factors; indicating notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.CrossRefPubMedGoogle Scholar
  39. 39.
    Goncalvez AP, Engle RE, St Claire M, et al.: Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A 2007, 104:9422–9427.CrossRefPubMedGoogle Scholar
  40. 40.
    •• Schul W, Liu W, Xu HY, et al.: A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J Infect Dis 2007, 195:665–674. This article highlights the advantages of a new mouse model.CrossRefPubMedGoogle Scholar
  41. 41.
    Keller TH, Chen YL, Knox JE, et al.: Finding new medicines for flaviviral targets. Novartis Found Symp 2006, 277:102–114; discussion 14–9, 251–253.CrossRefPubMedGoogle Scholar
  42. 42.
    • Noble CG, Chen YL, Dong H, et al.: Strategies for development of dengue virus inhibitors. Antiviral Res 2010, 85:450–462. This article provides a comprehensive update on recent developments in antiviral compounds for dengue virus inhibition.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang QY, Patel SJ, Vangrevelinghe E, et al.: A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 2009, 53:1823–1831.CrossRefPubMedGoogle Scholar
  44. 44.
    Li Z, Khaliq M, Zhou Z, et al.: Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem 2008, 51:4660–4671.CrossRefPubMedGoogle Scholar
  45. 45.
    Yin Z, Chen YL, Kondreddi RR, et al.: N-sulfonylanthranilic acid derivatives as allosteric inhibitors of dengue viral RNA-dependent RNA polymerase. J Med Chem 2009, 52:7934–7937.CrossRefPubMedGoogle Scholar
  46. 46.
    Yin Z, Chen YL, Schul W, et al.: An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci U S A 2009;106:20435–20439.CrossRefPubMedGoogle Scholar
  47. 47.
    Johnston PA, Phillips J, Shun TY, et al.: HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev Technol 2007, 5:737–750.CrossRefPubMedGoogle Scholar
  48. 48.
    Luzhkov VB, Selisko B, Nordqvist A, et al.: Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg Med Chem 2007, 15:7795–7802.CrossRefPubMedGoogle Scholar
  49. 49.
    Li J, Lim SP, Beer D, et al.: Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 2005, 280:28766–28774.CrossRefPubMedGoogle Scholar
  50. 50.
    Xu T, Sampath A, Chao A, et al.: Towards the design of flavivirus helicase/NTPase inhibitors: crystallographic and mutagenesis studies of the dengue virus NS3 helicase catalytic domain. Novartis Found Symp 2006, 277:87–97; discussion 101, 251–253.CrossRefPubMedGoogle Scholar
  51. 51.
    Williams KL, Zompi S, Beatty PR, et al.: A mouse model for studying dengue virus pathogenesis and immune response. Ann N Y Acad Sci 2009, 1171(Suppl 1):E12–E23.CrossRefPubMedGoogle Scholar
  52. 52.
    Kitchener S, Nissen M, Nasveld P, et al.: Immunogenicity and safety of two live-attenuated tetravalent dengue vaccine formulations in healthy Australian adults. Vaccine 2006, 24:1238–1241.CrossRefPubMedGoogle Scholar
  53. 53.
    McGee CE, Lewis MG, Claire MS, et al.: Recombinant chimeric virus with wild-type dengue 4 virus premembrane and envelope and virulent yellow fever virus asibi backbone sequences is dramatically attenuated in nonhuman primates. J Infect Dis 2008, 197:693–697.CrossRefPubMedGoogle Scholar
  54. 54.
    Monath TP: Dengue and yellow fever--challenges for the development and use of vaccines. N Engl J Med 2007, 357:2222–2225.CrossRefPubMedGoogle Scholar
  55. 55.
    Monath TP, Myers GA, Beck RA, et al.: Safety testing for neurovirulence of novel live, attenuated flavivirus vaccines: infant mice provide an accurate surrogate for the test in monkeys. Biologicals 2005, 33:131–144.PubMedGoogle Scholar
  56. 56.
    Khromava AY, Eidex RB, Weld LH, et al.: Yellow fever vaccine: an updated assessment of advanced age as a risk factor for serious adverse events. Vaccine 2005, 23:3256–3263.CrossRefPubMedGoogle Scholar
  57. 57.
    Guirakhoo F, Kitchener S, Morrison D, et al.: Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: phase I clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum Vaccin 2006, 2:60–67.PubMedGoogle Scholar
  58. 58.
    Huang CY, Butrapet S, Tsuchiya KR, et al.: Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 2003, 77:11436–11447.CrossRefPubMedGoogle Scholar
  59. 59.
    Rabablert J, Wasi C, Kinney R, et al.: Attenuating characteristics of DEN-2 PDK53 in flavivirus-naive peripheral blood mononuclear cells. Vaccine 2007, 25:3896–3905.CrossRefPubMedGoogle Scholar
  60. 60.
    Halstead SV, Vaughn DW: Dengue vaccines. In Vaccines. Edited by Plotkin SA, Orenstein WA, Offit PA. Oxford: Elsevier; 2008:1155–1161.Google Scholar
  61. 61.
    Hombach J: Vaccines against dengue: a review of current candidate vaccines at advanced development stages. Rev Panam Salud Publica 2007, 21:254–260.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Annelies Wilder-Smith
    • 1
    • 2
  • Eng-Eong Ooi
    • 2
  • Subhash G. Vasudevan
    • 2
  • Duane J. Gubler
    • 2
  1. 1.Department of MedicineNational University of SingaporeSingaporeSingapore
  2. 2.Emerging Infectious Diseases ProgramDuke-NUSSingaporeSingapore

Personalised recommendations