Current Infectious Disease Reports

, Volume 10, Issue 3, pp 192–199 | Cite as

The prospect of vaccination against group a β-hemolytic streptococci

Article

Abstract

Group A streptococcus is a widespread human pathogen that causes a broad spectrum of human disease. The persistent high burden and severity of illness in developing and industrialized countries speaks to the need for a safe and effective vaccine. Modern approaches to vaccine construction include M protein type-specific vaccines, vaccines utilizing conserved M antigens, and vaccines based on other conserved surface-expressed or secreted antigens. Vaccine candidates in various stages of development offer promise for prevention of Group A streptococcal infections and their sequelae.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Brown JH: The Use of Blood Agar for the Study of Streptococci. Monograph no 9. New York: The Rockefeller Institute for Medical Research; 1919.Google Scholar
  2. 2.
    Lancefield RC, Hare R: The serological differentiation of pathogenic and non-pathogenic strains of hemolytic streptococci from parturient women. J Exp Med 1935, 61:349.CrossRefGoogle Scholar
  3. 3.
    Lancefield RC, Dole VP: The properties of T antigens extracted from group A hemolytic streptococci. J Exp Med 1946, 84:449–471.CrossRefGoogle Scholar
  4. 4.
    Marijon E, Ou P, Celermajer DS, et al.: Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med 2007, 357:470–476.PubMedCrossRefGoogle Scholar
  5. 5.
    Glezen WP, Clyde WA Jr, Senior RJ, et al.: Group A streptococci, mycoplasmas, and viruses associated with acute pharyngitis. JAMA 1967, 202:455–460.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Loughlin RE, Roberson A, Cieslak PR, et al.: The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin Infect Dis 2007, 45:853–862.PubMedCrossRefGoogle Scholar
  7. 7.
    Shulman ST, Stollerman G, Beall B, et al.: Temporal changes in streptococcal M protein types and the neardisappearance of acute rheumatic fever in the United States. Clin Infect Dis 2006, 42:441–447.PubMedCrossRefGoogle Scholar
  8. 8.
    Carapetis JR, Wolff DR, Currie BJ: Acute rheumatic fever and rheumatic heart disease in the top end of Australia’s Northern Territory. Med J Aust 1996, 164:146–149.PubMedGoogle Scholar
  9. 9.
    Carapetis JR, Steer AC, Mulholland EK, Weber M: The global burden of group A streptococcal diseases. Lancet Infect Dis 2005, 5:685–694.PubMedCrossRefGoogle Scholar
  10. 10.
    Anthony BF, Kaplan EL, Wannamaker LW, et al.: Attack rates of acute nephritis after type 49 streptococcal infection of the skin and of the respiratory tract. J Clin Invest 1969, 48:1697–1704.PubMedCrossRefGoogle Scholar
  11. 11.
    Bisno AL, Brito MO, Collins CM: Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003, 3:191–200.PubMedCrossRefGoogle Scholar
  12. 12.
    Stalhammar-Carlemalm M, Areschoug T, Larsson C, Lindahl G: The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol 1999, 33:208–219.PubMedCrossRefGoogle Scholar
  13. 13.
    Pahlman LI, Morgelin M, Eckert J, et al.: Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 2006, 177:1221–1228.PubMedGoogle Scholar
  14. 14.
    Dinkla K, Sastalla I, Godehardt AW, et al.: Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related alpha2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect 2007, 9:922–931.PubMedCrossRefGoogle Scholar
  15. 15.
    Horstmann RD, Sievertsen HJ, Knobloch J, Fischetti VA: Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci U S A 1988, 85:1657–1661.PubMedCrossRefGoogle Scholar
  16. 16.
    Ji Y, McLandsborough L, Kondagunta A, Cleary PP: C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 1996, 64:503–510.PubMedGoogle Scholar
  17. 17.
    Rammelkamp CH, Denny FW, Wannamaker LW: Studies on epidemiology of rheumatic fever in the armed services. In: Rheumatic Fever. A Symposium. Edited by Thomas L. Minneapolis, MN: University of Minnesota; 1952:72.Google Scholar
  18. 18.
    McDonald M, Currie BJ, Carapetis JR: Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect Dis 2004, 4:240–245.PubMedCrossRefGoogle Scholar
  19. 19.
    Bessen D, Jones KF, Fischetti VA: Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever. J Exp Med 1989, 169:269–283.PubMedCrossRefGoogle Scholar
  20. 20.
    Bronze MS, Courtney HS, Dale JB: Epitopes of group A streptococcal M protein that evoke cross-protective local immune responses. J Immunol 1992, 148:888–893.PubMedGoogle Scholar
  21. 21.
    Galvin JE, Hemric ME, Ward K, Cunningham MW: Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J Clin Invest 2000, 106:217–224.PubMedCrossRefGoogle Scholar
  22. 22.
    Kirvan CA, Swedo SE, Heuser JS, Cunningham MW: Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med 2003, 9:914–920.PubMedCrossRefGoogle Scholar
  23. 23.
    Dighiero G, Guilbert B, Fermand JP, et al.: Thirty-six human monoclonal immunoglobulins with antibody activity against cytoskeleton proteins, thyroglobulin, and native DNA: immunologic studies and clinical correlations. Blood 1983, 62:264–270.PubMedGoogle Scholar
  24. 24.
    Sabharwal H, Michon F, Nelson D, et al.: Group A streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. J Infect Dis 2006, 193:129–135.PubMedCrossRefGoogle Scholar
  25. 25.
    Banks DJ, Beres SB, Musser JM: The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 2002, 10:515–521.PubMedCrossRefGoogle Scholar
  26. 26.
    Sumby P, Whitney AR, Graviss EA, et al.: Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2006, 2:e5.PubMedCrossRefGoogle Scholar
  27. 27.
    Taranta A, Kleinberg E, Feinstein AR, et al.: Rheumatic fever in children and adolescents. V. Relation of the rheumatic fever recurrence rate per streptococcal infection to pre-existing clinical features of patients. Ann Intern Med 1964, 60(Suppl 5):58–67.Google Scholar
  28. 28.
    Darenberg J, Ihendyane N, Sjolin J, et al.: Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis 2003, 37:333–340.PubMedCrossRefGoogle Scholar
  29. 29.
    Veasy LG, Wiedmeier SE, Orsmond GS, et al.: Resurgence of acute rheumatic fever in the intermountain area of the United States. N Engl J Med 1987, 316:421–427.PubMedGoogle Scholar
  30. 30.
    Okamoto S, Kawabata S, Fujitaka H, et al.: Vaccination with formalin-inactivated influenza vaccine protects mice against lethal influenza Streptococcus pyogenes superinfection. Vaccine 2004, 22:2887–2893.PubMedCrossRefGoogle Scholar
  31. 31.
    Patel RA, Binns HJ, Shulman ST: Reduction in pediatric hospitalizations for varicella-related invasive group A streptococcal infections in the varicella vaccine era. J Pediatr 2004, 144:68–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Beachey EH, Bronze M, Dale JB, et al.: Protective and autoimmune epitopes of streptococcal M proteins. Vaccine 1988, 6:192–196.PubMedCrossRefGoogle Scholar
  33. 33.
    Lancefield RC: Current knowledge of the type specific M antigens of group A streptococci. J Immunol 1962, 89:307–313.PubMedGoogle Scholar
  34. 34.
    Lancefield RC: Persistence of type specific antibodies in man following infection with group A streptococci. J Exp Med 1959, 110:271–292.PubMedCrossRefGoogle Scholar
  35. 35.
    Fox EN, Waldman RH, Wittner MK, et al.: Protective study with a group A streptococcal M protein vaccine. Infectivity challenge of human volunteers. J Clin Invest 1973, 52:1885–1892.PubMedCrossRefGoogle Scholar
  36. 36.
    Polly SM, Waldman RH, High P, et al.: Protective studies with a group A streptococcal M protein vaccine. II. Challenge of volunteers after local immunization in the upper respiratory tract. J Infect Dis 1975, 131:217–224.PubMedGoogle Scholar
  37. 37.
    D’Alessandri R, Plotkin G, Kluge RM, et al.: Protective studies with group A streptococcal M protein vaccine. III. Challenge of volunteers after systemic or intranasal immunization with Type 3 or Type 12 group A Streptococcus. J Infect Dis 1978, 138:712–718.PubMedGoogle Scholar
  38. 38.
    Pruksakorn S, Currie B, Brandt E, et al.: Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci. Lancet 1994, 344:639–642.PubMedCrossRefGoogle Scholar
  39. 39.
    Institute of Medicine: Vaccines for the 21st Century: A Tool for Decision Making. Edited by Stratton KR, Durch JS, Lawrence RS. Washington, D.C.: National Academy Press; 2001:181–188.Google Scholar
  40. 40.
    Young DC: Failure of type-specific Streptococcus pyogenes vaccine to prevent respiratory infections. U S Navy Med Bull 1946, 46:709–719.Google Scholar
  41. 41.
    Schmidt WC: Type-specific antibody formation in man following infection of streptococcal M protein. J Infect Dis 1960, 106:250–255.PubMedGoogle Scholar
  42. 42.
    Massell BF, Honikman LH, Amezcua J: Rheumatic fever following streptococcal vaccination. Report of three cases. JAMA 1969, 207:1115–1119.PubMedCrossRefGoogle Scholar
  43. 43.
    Beachey EH, Stollerman GH, Johnson RH, et al.: Human immune response to immunization with a structurally defined polypeptide fragment of streptococcal M protein. J Exp Med 1979, 150:862–877.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang B, Schlievert PM, Gaber AO, Kotb M: Localization of an immunologically functional region of the streptococcal superantigen pepsin-extracted fragment of type 5 M protein. J Immunol 1993, 151:1419–1429.PubMedGoogle Scholar
  45. 45.
    Kotloff KL, Corretti M, Palmer K, et al.: Safety and immunogenicity of a recombinant multivalent group a streptococcal vaccine in healthy adults: phase 1 trial. JAMA 2004, 292:709–715.PubMedCrossRefGoogle Scholar
  46. 46.
    McNeil SA, Halperin SA, Langley JM, et al.: Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clin Infect Dis 2005, 41:1114–1122.PubMedCrossRefGoogle Scholar
  47. 47.
    Hall MA, Stroop SD, Hu MC, et al.: Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. Infect Immun 2004, 72:2507–2512.PubMedCrossRefGoogle Scholar
  48. 48.
    Brandt ER, Hayman WA, Currie B, et al.: Human antibodies to the conserved region of the M protein: opsonization of heterologous strains of group A streptococci. Vaccine 1997, 15:1805–1812.PubMedCrossRefGoogle Scholar
  49. 49.
    Bessen D, Fischetti VA: Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun 1988, 56:2666–2672.PubMedGoogle Scholar
  50. 50.
    Pozzi G, Oggioni MR, Manganelli R, Fischetti VA: Expression of M6 protein gene of Streptococcus pyogenes in Streptococcus gordonii after chromosomal integration and transcriptional fusion. Res Microbiol 1992, 143:449–457.PubMedCrossRefGoogle Scholar
  51. 51.
    Kotloff KL, Wasserman SS, Jones KF, et al.: Clinical and microbiological responses of volunteers to combined intranasal and oral inoculation with a Streptococcus gordonii carrier strain intended for future use as a group A streptococcus vaccine. Infect Immun 2005, 24:533–537.Google Scholar
  52. 52.
    Shaila MS, Nayak R, Prakash SS, et al.: Comparative in silico analysis of two vaccine candidates for group A streptococcus predicts that they both may have similar safety profiles. Vaccine 2007, 25:3567–3573.PubMedCrossRefGoogle Scholar
  53. 53.
    Bazloff MR, Hayman WA, Davies MR, et al.: Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8-and diphtheria toxoid-specific antibodies to protection. J Infect Dis 2003, 187:1598–1608.CrossRefGoogle Scholar
  54. 54.
    Olive C, Clair T, Yarwood P, Good MF: Protection of mice from group A streptococcal infection by intranasal immunisation with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope. Vaccine 2002, 20:2816–2825.PubMedCrossRefGoogle Scholar
  55. 55.
    Olive C, Ho MF, Dyer J, et al.: Immunization with a tetraepitopic lipid core peptide vaccine construct induces broadly protective immune responses against group A streptococcus. J Infect Dis 2006, 193:1666–1676.PubMedCrossRefGoogle Scholar
  56. 56.
    Olive C, Sun HK, Ho MF, et al.: Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group a streptococcal M protein. J Infect Dis 2006, 194:316–324.PubMedCrossRefGoogle Scholar
  57. 57.
    Brandt ER, Sriprakash KS, Hobb RI, et al.: New multideterminant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nat Med 2000, 6:455–459.PubMedCrossRefGoogle Scholar
  58. 58.
    Batzloff MR, Yan H, Davies MR, et al.: Toward the development of an antidisease, transmission-blocking intranasal vaccine for Group A streptococcus. J Infect Dis 2005, 192:1450–1455.PubMedCrossRefGoogle Scholar
  59. 59.
    Olive C, Schulze K, Sun HK, et al.: Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/SfbI lipid core peptide vaccine formulation. Vaccine 2007, 25:1789–1797.PubMedCrossRefGoogle Scholar
  60. 60.
    Ji Y, Carlson B, Kondagunta A, Cleary PP: Intranasal immunization with C5a peptidase prevents nasopharyngeal colonization of mice by the group A Streptococcus. Infect Immun 1997, 65:2080–2087.PubMedGoogle Scholar
  61. 61.
    Park HS, Cleary PP: Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils. Infect Immun 2005, 73:7878–7886.PubMedCrossRefGoogle Scholar
  62. 62.
    Schulze K, Olive C, Ebensen T, Guzman CA: Intranasal vaccination with SfbI or M protein-derived peptides conjugated to diphtheria toxoid confers protective immunity against a lethal challenge with Streptococcus pyogenes. Vaccine 2006, 24:6088–6095.PubMedCrossRefGoogle Scholar
  63. 63.
    Kawabata S, Kunitomo E, Terao Y, et al.: Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against Streptococcus pyogenes challenge in mice. Infect Immun 2001, 69:924–930.PubMedCrossRefGoogle Scholar
  64. 64.
    Schlievert PM, Assimacopoulos AP, Cleary PP: Severe invasive group A streptococcal disease: clinical description and mechanisms of pathogenesis. J Lab Clin Med 1996, 127:13–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Roggiani M, Stoehr JA, Olmsted SB, et al.: Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect Immun 2000, 68:5011–5017.PubMedCrossRefGoogle Scholar
  66. 66.
    Mora M, Bensi G, Capo S, et al.: Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 2005, 102:15641–15646.PubMedCrossRefGoogle Scholar
  67. 67.
    Sabharwal H, Michon F, Nelson D, et al.: Group A streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. J Infect Dis 2006, 193:129–135.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang S, Green NM, Sitkiewicz I, et al.: Identification and characterization of an antigen I/II family protein produced by group A streptococcus. Infect Immun 2006, 74:4200–4213.PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez-Ortega MJ, Norais N, Bensi G, et al.: Characterization and identification of vaccine candidate proteins through analysis of the group A streptococcus surface proteome. Nat Biotechnol 2006, 24:191–197.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Division of Geographic Medicine, Department of Medicine, Center for Vaccine DevelopmentUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations