Current Infectious Disease Reports

, Volume 10, Issue 2, pp 111–115 | Cite as

The molecular pathogenesis of Clostridium difficile-associated disease

  • David A. Bobak


Clostridium difficile-associated disease is a reemerging nosocomial disease of paramount importance not only in the United States, but most of the world as well. Recently, C. difficile-associated disease appears to be on the rise, with a parallel increase noted in its severity and extent. Although the main virulence factors, the large exotoxins known as toxin A and toxin B, have long been identified, only in the past few years has a near explosion of new information regarding the details of the toxin-mediated pathogenicity come to light. This update gives an overview of some of the more exciting and insightful reports published in the recent literature.


Oxin Toxin Expression Stal Structure Tcds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Bartlett JG: Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 2006, 145:758–764.PubMedGoogle Scholar
  2. 2.
    Blossom DB, McDonald LC: The challenges posed by reemerging Clostridium difficile infection. Clin Infect Dis 2007, 45:222–227.PubMedCrossRefGoogle Scholar
  3. 3.
    Cloud J, Kelly CP: Update on Clostridium difficile associated disease. Curr Opin Gastroenterol 2007, 23:4–9.PubMedGoogle Scholar
  4. 4.
    McMaster-Baxter NL, Musher DM: Clostridium difficile: recent epidemiologic findings and advances in therapy. Pharmacotherapy 2007, 27:1029–1039.PubMedCrossRefGoogle Scholar
  5. 5.
    Voth DE, Ballard JD: Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 2005, 18:247–263.PubMedCrossRefGoogle Scholar
  6. 6.
    Jank T, Giesemann T, Aktories K: Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 2007, 17:15R–22R.PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen SH, Tang YJ, Silva J Jr: Analysis of the pathogenicity locus in Clostridium difficile strains. J Infect Dis 2000, 181:659–663.PubMedCrossRefGoogle Scholar
  8. 8.
    Spigaglia P, Mastrantonio P: Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 2002, 40:3470–3475.PubMedCrossRefGoogle Scholar
  9. 9.
    McDonald LC, Killgore GE, Thompson A, et al.: An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005, 353:2433–2441.PubMedCrossRefGoogle Scholar
  10. 10.
    Curry SR, Marsh JW, Muto CA, et al.: tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol 2007, 45:215–221.PubMedCrossRefGoogle Scholar
  11. 11.
    Stabler RA, Gerding DN, Songer JG, et al.: Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 2006, 188:7297–7305.PubMedCrossRefGoogle Scholar
  12. 12.
    Sebaihia M, Wren BW, Mullany P, et al.: The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006, 38:779–786.PubMedCrossRefGoogle Scholar
  13. 13.
    Carter GP, Purdy D, Williams P, Minton NP: Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 2005, 54:1119–1127.CrossRefGoogle Scholar
  14. 14.
    Cookson B: Hypervirulent strains of Clostridium difficile. Postgrad Med J 2007, 83:291–295.PubMedCrossRefGoogle Scholar
  15. 15.
    Drudy D, Fanning S, Kyne L: Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis 2007, 11:5–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Matamouros S, England P, Dupuy B: Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 2007, 64:1274–1288.PubMedCrossRefGoogle Scholar
  17. 17.
    Heap JT, Pennington OJ, Cartman ST, et al.: The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007, 70:452–464.PubMedCrossRefGoogle Scholar
  18. 18.
    Ho JG, Greco A, Rupnik M, Ng KK: Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci U S A 2005, 102:18373–18378.PubMedCrossRefGoogle Scholar
  19. 19.
    Greco A, Ho JG, Lin SJ, et al.: Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 2006, 13:460–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Stubbe H, Berdoz J, Kraehenbuhl JP, Corthésy B: Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J Immunol 2000, 164:1952–1960.PubMedGoogle Scholar
  21. 21.
    Giesemann T, Jank T, Gerhard R, et al.: Cholesterol-dependent pore formation of Clostridium difficile toxin A. J Biol Chem 2006, 281:10808–10815.PubMedCrossRefGoogle Scholar
  22. 22.
    Pfeifer G, Schirmer J, Leemhuis J, et al.: Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 2003, 278:44535–44541.PubMedCrossRefGoogle Scholar
  23. 23.
    Rupnik M, Pabst S, Rupnik M, et al.: Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 2005, 151:199–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Reineke J, Tenzer S, Rupnik M, et al.: Autocatalytic cleavage of Clostridium difficile toxin B. Nature 2007, 446:415–419.PubMedCrossRefGoogle Scholar
  25. 25.
    Egerer M, Giesemann T, Jank T, et al.: Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J Biol Chem 2007, 282:25314–25321.PubMedCrossRefGoogle Scholar
  26. 26.
    Jaffe AB, Hall A: Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005, 21:247–269.PubMedCrossRefGoogle Scholar
  27. 27.
    Bustelo XR, Sauzeau V, Berenjeno IM: GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 2007, 29:356–370.PubMedCrossRefGoogle Scholar
  28. 28.
    Reinert DJ, Jank T, Aktories K, Schulz GE: Structural basis for the function of Clostridium difficile toxin B. J Mol Biol 2005, 351:973–981.PubMedCrossRefGoogle Scholar
  29. 29.
    Jank T, Reinert DJ, Giesemann T, et al.: Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. J Biol Chem 2005, 280:37833–37838.PubMedCrossRefGoogle Scholar
  30. 30.
    Jank T, Pack U, Giesemann T, et al.: Exchange of a single amino acid switches the substrate properties of RhoA and RhoD toward glucosylating and transglutaminating toxins. J Biol Chem 2006, 281:19527–19535.PubMedCrossRefGoogle Scholar
  31. 31.
    Jank T, Giesemann T, Aktories K: Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding. J Biol Chem 2007, 282:35222–35231.PubMedCrossRefGoogle Scholar
  32. 32.
    Barth H, Aktories K, Popoff MR, Stiles BG: Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004, 68:373–402.PubMedCrossRefGoogle Scholar
  33. 33.
    Geric B, Carman RJ, Rupnik M, et al.: Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis 2006, 193:1143–1145.PubMedCrossRefGoogle Scholar
  34. 34.
    Matarrese P, Falzano L, Fabbri A, et al.: Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria. Involvement of ATP-sensitive mitochondrial potassium channels. J Biol Chem 2007, 282:9029–9041.PubMedCrossRefGoogle Scholar
  35. 35.
    Huelsenbeck J, Dreger S, Gerhard R, et al.: Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470. Infect Immun 2007, 75:801–809.PubMedCrossRefGoogle Scholar
  36. 36.
    Chaves-Olarte E, Freer E, Parra A, et al.: R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. J Biol Chem 2003, 278:7956–7963.PubMedCrossRefGoogle Scholar
  37. 37.
    Gerhard R, Tatge H, Genth H, et al.: Clostridium difficile toxin A induces expression of the stress-induced early gene product RhoB. J Biol Chem 2005, 280:1499–1505.PubMedCrossRefGoogle Scholar
  38. 38.
    Chae S, Eckmann L, Miyamoto Y, et al.: Epithelial cell I kappa B-kinase beta has an important protective role in Clostridium difficile toxin A-induced mucosal injury. J Immunol 2006, 177:1214–1220.PubMedGoogle Scholar
  39. 39.
    Huelsenbeck J, Dreger SC, Gerhard R, et al.: Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile. Biochemistry 2007, 46:4923–4931.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim H, Rhee SH, Kokkotou E, et al.: Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J Biol Chem 2005, 280:21237–21245.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee JY, Park HR, Oh YK, et al.: Effects of transcription factor activator protein-1 on interleukin-8 expression and enteritis in response to Clostridium difficile toxin A. J Mol Med 2007, 85:1393–1404.PubMedCrossRefGoogle Scholar
  42. 42.
    Anton PM, Gay J, Mykoniatis A, et al.: Corticotropin-releasing hormone (CRH) requirement in Clostridium difficile toxin A-mediated intestinal inflammation. Proc Natl Acad Sci U S A 2004, 101:8503–8508.PubMedCrossRefGoogle Scholar
  43. 43.
    Tait AS, Dalton M, Geny B, et al.: The large clostridial toxins from Clostridium sordellii and C. difficile repress glucocorticoid receptor activity. Infect Immun 2007, 75:3935–3940.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Division of Infectious Diseases and HIV Medicine, Case School of MedicineUniversity Hospital-Case Medical CenterClevelandUSA

Personalised recommendations