Current Infectious Disease Reports

, Volume 9, Issue 6, pp 485–500 | Cite as

Bacterial vaginosis: Culture- and PCR-based characterizations of a complex polymicrobial disease’s pathobiology

  • Apoorv Kalra
  • Cristina T. Palcu
  • Jack D. Sobel
  • R. A. Akins
Article

Abstract

Bacterial vaginosis (BV) is an enigmatic polymicrobial disease, and its evolution and pathobiology will not be solved by traditional culture-based methods. Characterization of the vaginal microbiota by polymerase chain reaction-based methods holds great promise. Molecular studies have identified species not detected by culture, but they also have missed some species identified by culture. These studies allow classification of both normal and BV patients based on distinct microbiologic profiles, which may prove important in accessing risk of BV, response to treatment, and risk of complications. More studies using new generations of primers and standardized methods are needed, and data must be analyzed after grouping patients according to microbiologic profiles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Sobel JD: Vaginitis. N Engl J Med 1997, 337:1896–1903.PubMedCrossRefGoogle Scholar
  2. 2.
    Allsworth JE, Peipert JF: Prevalence of bacterial vaginosis: 2001–2004 national health and nutrition examination survey data. Obstet Gynecol 2007, 109:114–120.PubMedGoogle Scholar
  3. 3.
    Roberton AM, Wiggins R, Horner PJ, et al.: A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis. J Clin Microbiol 2005, 43:5504–5508.PubMedCrossRefGoogle Scholar
  4. 4.
    McDonald HM, O’Loughlin JA, Jolley PT, et al.: Changes in vaginal flora during pregnancy and association with preterm birth. J Infect Dis 1994, 170:724–728.PubMedGoogle Scholar
  5. 5.
    Goyal R, Sharma P, Kaur I, et al.: Bacterial vaginosis and vaginal anaerobes in preterm labour. J Indian Med Assoc 2004, 102:548–550, 553.PubMedGoogle Scholar
  6. 6.
    Wiesenfeld HC, Hillier SL, Krohn MA, et al.: Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis 2003, 36:663–668.PubMedCrossRefGoogle Scholar
  7. 7.
    Marrazzo JM, Wiesenfeld HC, Murray PJ, et al.: Risk factors for cervicitis among women with bacterial vaginosis. J Infect Dis 2006, 193:617–624.PubMedCrossRefGoogle Scholar
  8. 8.
    Marrazzo JM, Koutsky LA, Eschenbach DA, et al.: Characterization of vaginal flora and bacterial vaginosis in women who have sex with women. J Infect Dis 2002, 185:1307–1313.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwebke JR, Desmond R: Risk factors for bacterial vaginosis in women at high risk for sexually transmitted diseases. Sex Transm Dis 2005, 32:654–658.PubMedCrossRefGoogle Scholar
  10. 10.
    Colli E, Landoni M, Parazzini F: Treatment of male partners and recurrence of bacterial vaginosis: a randomised trial. Genitourin Med 1997, 73:267–270.PubMedGoogle Scholar
  11. 11.
    Relman DA: The search for unrecognized pathogens. Science 1999, 284:1308–1310.PubMedCrossRefGoogle Scholar
  12. 12.
    Hillier SL, Krohn MA, Nugent RP, Gibbs RS: Characteristics of three vaginal flora patterns assessed by gram stain among pregnant women. Vaginal Infections and Prematurity Study Group. Am J Obstet Gynecol 1992, 166:938–944.PubMedGoogle Scholar
  13. 13.
    Hellberg D, Nilsson S, Mardh PA: The diagnosis of bacterial vaginosis and vaginal flora changes. Arch Gynecol Obstet 2001, 265:11–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Cristiano L, Coffetti N, Dalvai G, et al.: Bacterial vaginosis: prevalence in outpatients, association with some micro-organisms and laboratory indices. Genitourin Med 1989, 65:382–387.PubMedGoogle Scholar
  15. 15.
    Chow AW, Percival-Smith R, Bartlett KH, et al.: Vaginal colonization with Escherichia coli in healthy women. Determination of relative risks by quantitative culture and multivariate statistical analysis. Am J Obstet Gynecol 1986, 154:120–126.PubMedGoogle Scholar
  16. 16.
    Ness RB, Kip KE, Soper DE, et al.: Variability of bacterial vaginosis over 6-to 12-month intervals. Sex Transm Dis 2006, 33:381–385.PubMedCrossRefGoogle Scholar
  17. 17.
    Hillier SL, Critchlow CW, Stevens CE, et al.: Microbiological, epidemiological and clinical correlates of vaginal colonisation by Mobiluncus species. Genitourin Med 1991, 67:26–31.PubMedGoogle Scholar
  18. 18.
    Cauci S, Driussi S, De Santo D, et al.: Prevalence of bacterial vaginosis and vaginal flora changes in peri-and postmenopausal women. J Clin Microbiol 2002, 40:2147–2152.PubMedCrossRefGoogle Scholar
  19. 19.
    Amsel R, Totten PA, Spiegel CA, et al.: Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983, 74:14–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Deodhar LP, Pandit DV: Mycoplasma hominis in women with bacterial vaginosis. Indian J Med Res 1992, 95:144–147.PubMedGoogle Scholar
  21. 21.
    Hallen A, Pahlson C, Forsum U: Bacterial vaginosis in women attending STD clinic: diagnostic criteria and prevalence of Mobiluncus spp. Genitourin Med 1987, 63:386–389.PubMedGoogle Scholar
  22. 22.
    Keane FE, Thomas BJ, Gilroy CB, et al.: The association of Mycoplasma hominis, Ureaplasma urealyticum and Mycoplasma genitalium with bacterial vaginosis: observations on heterosexual women and their male partners. Int J STD AIDS 2000, 11:356–360.PubMedCrossRefGoogle Scholar
  23. 23.
    Pybus V, Onderdonk AB: Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect 1999, 1:285–292.PubMedCrossRefGoogle Scholar
  24. 24.
    Pereira L, Culhane J, McCollum K, et al.: Variation in microbiologic profiles among pregnant women with bacterial vaginosis. Am J Obstet Gynecol 2005, 193:746–751.PubMedCrossRefGoogle Scholar
  25. 25.
    Forsum U, Holst E, Larsson PG, et al.: Bacterial vaginosis—a microbiological and immunological enigma. Apmis 2005, 113:81–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Blackwell AL, Fox AR, Phillips I, Barlow D: Anaerobic vaginosis (non-specific vaginitis): clinical, microbiological, and therapeutic findings. Lancet 1983, 2:1379–1382.PubMedCrossRefGoogle Scholar
  27. 27.
    Holst E, Wathne B, Hovelius B, Mardh PA: Bacterial vaginosis: microbiological and clinical findings. Eur J Clin Microbiol 1987, 6:536–541.PubMedCrossRefGoogle Scholar
  28. 28.
    Roy S, Sharma M, Ayyagari A, Malhotra S: A quantitative microbiological study of bacterial vaginosis. Indian J Med Res 1994, 100:172–176.PubMedGoogle Scholar
  29. 29.
    Bartlett JG, Onderdonk AB, Drude E, et al.: Quantitative bacteriology of the vaginal flora. J Infect Dis 1977, 136:271–277.PubMedGoogle Scholar
  30. 30.
    Ohm MJ, Galask RP: Bacterial flora of the cervix from 100 prehysterectomy patients. Am J Obstet Gynecol 1975, 122:683–687.PubMedGoogle Scholar
  31. 31.
    Eckburg PB, Bik EM, Bernstein CN, et al.: Diversity of the human intestinal microbial flora. Science 2005, 308:1635–1638.PubMedCrossRefGoogle Scholar
  32. 32.
    Ley RE, Backhed F, Turnbaugh P, et al.: Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102:11070–11075.PubMedCrossRefGoogle Scholar
  33. 33.
    Diaz PI, Chalmers NI, Rickard AH, et al.: Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 2006, 72:2837–2848.PubMedCrossRefGoogle Scholar
  34. 34.
    Sogin ML, Morrison HG, Huber JA, et al.: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 2006, 103:12115–12120.PubMedCrossRefGoogle Scholar
  35. 35.
    Yu Z, Yu M, Morrison M: Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition. Environ Microbiol 2006, 8:603–611.PubMedCrossRefGoogle Scholar
  36. 36.
    Neufeld JD, Mohn WW, de Lorenzo V: Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol 2006, 8:126–140.PubMedCrossRefGoogle Scholar
  37. 37.
    Fisher MM, Triplett EW: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 1999, 65:4630–4636.PubMedGoogle Scholar
  38. 38.
    Leuko S, Goh F, Allen MA, et al.: Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 2007, 11:203–210.PubMedCrossRefGoogle Scholar
  39. 39.
    Sepehri S, Kotlowski R, Bernstein CN, Krause DO: Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 2007, 13:675–683.PubMedCrossRefGoogle Scholar
  40. 40.
    Arias CR, Abernathy JW, Liu Z: Combined use of 16S ribosomal DNA and automated ribosomal intergenic spacer analysis to study the bacterial community in catfish ponds. Lett Appl Microbiol 2006, 43:287–292.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown MV, Schwalbach MS, Hewson I, Fuhrman JA: Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 2005, 7:1466–1479.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones CM, Thies JE: Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Methods 2007, 69:256–267.PubMedCrossRefGoogle Scholar
  43. 43.
    Gentry TJ, Wickham GS, Schadt CW, et al.: Microarray applications in microbial ecology research. Microb Ecol 2006, 52:159–175.PubMedCrossRefGoogle Scholar
  44. 44.
    Brodie EL, DeSantis TZ, Parker JP, et al.: Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 2007, 104:299–304.PubMedCrossRefGoogle Scholar
  45. 45.
    Buckley DH, Huangyutitham V, Nelson TA, et al.: Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 2006, 72:4522–4531.PubMedCrossRefGoogle Scholar
  46. 46.
    Flanagan JL, Brodie EL, Weng L, et al.: Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol 2007, 45:1954–1962.PubMedCrossRefGoogle Scholar
  47. 47.
    DeSantis TZ, Brodie EL, Moberg JP, et al.: High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 2007, 53:371–383.PubMedCrossRefGoogle Scholar
  48. 48.
    Palmer C, Bik EM, Eisen MB, et al.: Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 2006, 34:e5.PubMedCrossRefGoogle Scholar
  49. 49.
    Palmer C, Bik EM, Digiulio DB, et al.: Development of the human infant intestinal microbiota. PLoS Biol 2007, 5:e177.PubMedCrossRefGoogle Scholar
  50. 50.
    Bonnet R, Suau A, Dore J, et al.: Differences in rDNA libraries of faecal bacteria derived from 10-and 25-cycle PCRs. Int J Syst Evol Microbiol 2002, 52:757–763.PubMedCrossRefGoogle Scholar
  51. 51.
    Acinas SG, Klepac-Ceraj V, Hunt DE, et al.: Fine-scale phylogenetic architecture of a complex bacterial community. Nature 2004, 430:551–554.PubMedCrossRefGoogle Scholar
  52. 52.
    Ley RE, Harris JK, Wilcox J, et al.: Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 2006, 72:3685–3695.PubMedCrossRefGoogle Scholar
  53. 53.
    Polz MF, Bertilsson S, Acinas SG, Hunt D: A(r)Ray of hope in analysis of the function and diversity of microbial communities. Biol Bull 2003, 204:196–199.PubMedCrossRefGoogle Scholar
  54. 54.
    Thompson JR, Marcelino LA, Polz MF: Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 2002, 30:2083–2088.PubMedCrossRefGoogle Scholar
  55. 55.
    Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF: PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 2005, 71:8966–8969.PubMedCrossRefGoogle Scholar
  56. 56.
    Huber T, Faulkner G, Hugenholtz P: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 2004, 20:2317–2319.PubMedCrossRefGoogle Scholar
  57. 57.
    Ashelford KE, Chuzhanova NA, Fry JC, et al.: At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 2005, 71:7724–7736.PubMedCrossRefGoogle Scholar
  58. 58.
    Ashelford KE, Chuzhanova NA, Fry JC, et al.: New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 2006, 72:5734–5741.PubMedCrossRefGoogle Scholar
  59. 59.
    Hori M, Fukano H, Suzuki Y: Uniform amplification of multiple DNAs by emulsion PCR. Biochem Biophys Res Commun 2007, 352:323–328.PubMedCrossRefGoogle Scholar
  60. 60.
    Hyman RW, Fukushima M, Diamond L, et al.: Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A 2005, 102:7952–7957.PubMedCrossRefGoogle Scholar
  61. 61.
    Brown CJ, Wong M, Davis CC, et al.: Preliminary characterization of the normal microbiota of the human vulva using cultivation-independent methods. J Med Microbiol 2007, 56:271–276.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou X, Brown CJ, Abdo Z, et al.: Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J 2007, 1:121–133.PubMedCrossRefGoogle Scholar
  63. 63.
    Ferris MJ, Norori J, Zozaya-Hinchliffe M, Martin DH: Cultivation-independent analysis of changes in bacterial vaginosis flora following metronidazole treatment. J Clin Microbiol 2007, 45:1016–1018.PubMedCrossRefGoogle Scholar
  64. 64.
    Fredricks DN, Fiedler TL, Marrazzo JM: Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 2005, 353:1899–1911.PubMedCrossRefGoogle Scholar
  65. 65.
    Verhelst R, Verstraelen H, Claeys G, et al.: Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 2004, 4:16.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhou X, Bent SJ, Schneider MG, et al.: Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 2004, 150:2565–2573.PubMedCrossRefGoogle Scholar
  67. 67.
    Falsen E, Pascual C, Sjoden B, et al.: Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol 1999, 49:217–221.PubMedCrossRefGoogle Scholar
  68. 68.
    Burton JP, Reid G: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J Infect Dis 2002, 186:1770–1780.PubMedCrossRefGoogle Scholar
  69. 69.
    Devillard E, Burton JP, Reid G: Complexity of vaginal microflora as analyzed by PCR denaturing gradient gel electrophoresis in a patient with recurrent bacterial vaginosis. Infect Dis Obstet Gynecol 2005, 13:25–31.PubMedGoogle Scholar
  70. 70.
    Vitali B, Pugliese C, Biagi E, et al.: Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis or no infection analysed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Appl Environ Microbiol 2007, Epub ahead of print.Google Scholar
  71. 71.
    Cook RL, Redondo-Lopez V, Schmitt C, et al.: Clinical, microbiological, and biochemical factors in recurrent bacterial vaginosis. J Clin Microbiol 1992, 30:870–877.PubMedGoogle Scholar
  72. 72.
    Burton JP, Chilcott CN, Al-Qumber M, et al.: A preliminary survey of Atopobium vaginae in women attending the Dunedin gynaecology out-patients clinic: is the contribution of the hard-to-culture microbiota overlooked in gynaecological disorders? Aust N Z J Obstet Gynaecol 2005, 45:450–452.PubMedCrossRefGoogle Scholar
  73. 73.
    Sha BE, Chen HY, Wang QJ, et al.: Utility of Amsel criteria, Nugent score, and quantitative PCR for Gardnerella vaginalis, Mycoplasma hominis, and Lactobacillus spp. for diagnosis of bacterial vaginosis in human immunodeficiency virus-infected women. J Clin Microbiol 2005, 43:4607–4612.PubMedCrossRefGoogle Scholar
  74. 74.
    Verstraelen H, Verhelst R, Claeys G, et al.: Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol 2004, 191:1130–1132.PubMedCrossRefGoogle Scholar
  75. 75.
    Fredricks DN, Fiedler TL, Thomas KK, et al.: Targeted polymerase-chain-reaction for the detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 2007, Epub ahead of print.Google Scholar
  76. 76.
    Schwebke JR, Lawing LF: Prevalence of Mobiluncus spp among women with and without bacterial vaginosis as detected by polymerase chain reaction. Sex Transm Dis 2001, 28:195–199.PubMedCrossRefGoogle Scholar
  77. 77.
    Obata-Yasuoka M, Ba-Thein W, Hamada H, Hayashi H: A multiplex polymerase chain reaction-based diagnostic method for bacterial vaginosis. Obstet Gynecol 2002, 100:759–764.PubMedCrossRefGoogle Scholar
  78. 78.
    van Belkum A, van der Schee C, van der Meijden WI, et al.: A clinical study on the association of Trichomonas vaginalis and Mycoplasma hominis infections in women attending a sexually transmitted disease (STD) outpatient clinic. FEMS Immunol Med Microbiol 2001, 32:27–32.PubMedCrossRefGoogle Scholar
  79. 79.
    Zariffard MR, Saifuddin M, Sha BE, Spear GT: Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol Med Microbiol 2002, 34:277–281.PubMedCrossRefGoogle Scholar
  80. 80.
    Thies FL, Konig W, Konig B: Rapid characterization of the normal and disturbed vaginal microbiota by application of 16S rRNA gene terminal RFLP fingerprinting. J Med Microbiol 2007, 56:755–761.PubMedCrossRefGoogle Scholar
  81. 81.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444:1022–1023.PubMedCrossRefGoogle Scholar
  82. 82.
    Criswell BS, Ladwig CL, Gardner HL, Dukes CD: Haemophilus vaginalis: vaginitis by inoculation from culture. Obstet Gynecol 1969, 33:195–199.PubMedGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • Apoorv Kalra
  • Cristina T. Palcu
  • Jack D. Sobel
  • R. A. Akins
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations