Current Infectious Disease Reports

, Volume 2, Issue 5, pp 409–416 | Cite as

Impact of antibiotic resistance on the treatment of gram-negative sepsis

  • Lindsey R. Baden
  • Barry I. Eisenstein
Article

Abstract

Resistance among gram-negative organisms has greatly complicated the care of the septic patient. An understanding of the likely source of infection, the epidemiologic risk of the patient being exposed to an antibiotic-resistant organism, and the specific vulnerabilities of the host are essential to the proper selection of empiric antimicrobial therapy. In this report, we discuss the epidemiology, antibiotic resistance mechanisms, microbiology, treatment strategies, and diagnostic and therapeutic innovations in the approach to the septic patient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Bone RC, Grodzin CJ, Balk RA: Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 1997, 112:235–243.PubMedGoogle Scholar
  2. 2.
    Ziegler EJ, Fisher CJ Jr, Sprung CL, et al.: Treatment of gramnegative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med 1991, 324:429–436.PubMedCrossRefGoogle Scholar
  3. 3.
    Eisenstein BI, Zaleznik DF: Enterobacteriaceae. In Principles and Practice of Infectious Diseases. Edited by Mandell GL, Bennett JE, Dolin R. Philadelphia: Churchill Livingstone; 1999:2294–2310. This chapter comprehensively reviews the Enterobacteriacae.Google Scholar
  4. 4.
    Gold HS, Moellering RC Jr: Antimicrobial-drug resistance. N Engl J Med 1996, 335:1445–1453. This article reviews the emergence of several important mechanisms of resistance in the 1990s.PubMedCrossRefGoogle Scholar
  5. 5.
    Hospital Infections Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) System Report, Data, Summary from October 1986–April 1998, Issued June 1998. Atlanta: Public Health Service, US Department of Health and Human Services; 1998:1–25. This report analyzes data collected by the NNIS System, an ongoing national surveillance system monitoring nosocomial infection rates, organisms and resistance patterns at more than 250 hospitals. The report can be downloaded from the CDC website at.Google Scholar
  6. 6.
    Miller YW, Eady EA, Lacey RW, et al.: Sequential antibiotic therapy for acne promotes the carriage of resistant staphylococci on the skin of contacts. J Antimicrob Chemother 1996, 38:829–837.PubMedGoogle Scholar
  7. 7.
    Levy SB: Multidrug resistance--a sign of the times [editorial; comment]. N Engl J Med 1998, 338:1376–1378.PubMedCrossRefGoogle Scholar
  8. 8.
    Endtz HP, Ruijs GJ, van Klingeren B, et al.: Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 1991, 27:199–208.PubMedCrossRefGoogle Scholar
  9. 9.
    Glynn MK, Bopp C, Dewitt W, et al.: Emergence of multidrugresistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med 1998, 338:1333–1338.PubMedCrossRefGoogle Scholar
  10. 10.
    Fridkin SK, Steward CD, Edwards JR, et al.: Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: project ICARE phase 2. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) hospitals. Clin Infect Dis 1999, 29:245–252. This report analyzes antibiotic resistance patterns and concomitant antimicrobial use at 41 US hospitals.PubMedGoogle Scholar
  11. 11.
    Yinnon AM, Butnaru A, Raveh D, et al.: Klebsiella bacteraemia: community versus nosocomial infection. QJM 1996, 89:933–941.PubMedGoogle Scholar
  12. 12.
    Emori TG, Culver DH, Horan TC, et al.: National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control 1991, 19:19–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Vincent JL, Bihari DJ, Suter PM, et al.: The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee JAMA 1995, 274:639–644.CrossRefGoogle Scholar
  14. 14.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP: Nosocomial infections in coronary care units in the United States. National Nosocomial Infections Surveillance System. Am J Cardiol 1998, 82:789–793. This is a careful analysis of the pathogens causing infections in US CCUs, from the NNIS database.PubMedCrossRefGoogle Scholar
  15. 15.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP: Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 1999. 27:887–892. This is a careful analysis of the pathogens causing infections in US MICUs, from the NNIS database.PubMedCrossRefGoogle Scholar
  16. 16.
    Fridkin SK, Welbel SF, Weinstein RA: Magnitude and prevention of nosocomial infections in the intensive care unit. Infect Dis Clin North Am 1997, 11:479–496.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller GH, Sabatelli FJ, Hare RS, et al.: The most frequent aminoglycoside resistance mechanisms--changes with time and geographic area: a reflection of aminoglycoside usage patterns? Aminoglycoside Resistance Study Groups. Clin Infect Dis 1997, 24(Suppl 1):S46–62.PubMedGoogle Scholar
  18. 18.
    Dornbusch K, King A, Legakis N: Incidence of antibiotic resistance in blood and urine isolates from hospitalized patients. Report from a European collaborative study. European Study Group on Antibiotic Resistance (ESGAR). Scand J Infect Dis 1998, 30:281–288.PubMedCrossRefGoogle Scholar
  19. 19.
    Barsic B, Beus I, Marton E, et al.: Antibiotic resistance among gram-negative nosocomial pathogens in the intensive care unit: results of 6-year body-site monitoring. Clin Ther 1997, 19:691–700.PubMedCrossRefGoogle Scholar
  20. 20.
    Pfaller MA, Jones RN, Doern GV, Kugler K: Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob Agents Chemother 1998, 42:1762–1770. These authors investigate antimicrobial resistance patterns for blood stream pathogens from 38 sites in the US and Canada.PubMedGoogle Scholar
  21. 21.
    Jones RN, Pfaller MA, Marshall SA, et al.: Antimicrobial activity of 12 broad-spectrum agents tested against 270 nosocomial blood stream infection isolates caused by non-enteric gram-negative bacilli: occurrence of resistance, molecular epidemiology, and screening for metallo-enzymes. Diagn Microbiol Infect Dis 1997, 29:187–192.PubMedCrossRefGoogle Scholar
  22. 22.
    Virk A, Steckelberg JM: Clinical aspects of antimicrobial resistance [review]. Mayo Clin Proc 2000, 75:200–214.PubMedCrossRefGoogle Scholar
  23. 23.
    Medeiros AA: Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis 1997, 24(Suppl 1):S19-S45.PubMedGoogle Scholar
  24. 24.
    Pfaller MA, Jones RN, Marshall SA, et al.: Inducible amp C β-lactamase producing gram-negative bacilli from blood stream infections: frequency, antimicrobial susceptibility, and molecular epidemiology in a national surveillance program (SCOPE). Diagn Microbiol Infect Dis 1997, 28:211–219.PubMedCrossRefGoogle Scholar
  25. 25.
    Pitout JD, Sanders CC, Sanders WE Jr: Antimicrobial resistance with focus on β-lactam resistance in gram-negative bacilli. Am J Med 1997, 103:51–59.PubMedCrossRefGoogle Scholar
  26. 26.
    Chow JW, Fine MJ, Shlaes DM, et al.: Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991. 115:585–590.PubMedGoogle Scholar
  27. 27.
    Karas JA, Pillay DG, Muckart D, Sturm AW: Treatment failure due to extended spectrum β-lactamase [letter]. J Antimicrob Chemother 1996, 37:203–204.PubMedCrossRefGoogle Scholar
  28. 28.
    Jacoby GA: Genetics of extended-spectrum β -lactamases. Eur J Clin Microbiol Infect Dis 1994. 13(Suppl 1):S2-S11.PubMedCrossRefGoogle Scholar
  29. 29.
    Rice LB, Carias LL, Bonomo RA, Shlaes DM: Molecular genetics of resistance to both ceftazidime and β -lactam-β -lactamase inhibitor combinations in Klebsiella pneumoniae and in vivo response to β-lactam therapy. J Infect Dis 1996, 173:151–158.PubMedGoogle Scholar
  30. 30.
    Romaschin AD, Harris DM, Ribeiro MB, et al.: A rapid assay of endotoxin in whole blood using autologous neutrophil dependent chemiluminescence. J Immunol Methods 1998, 212:169–185.PubMedCrossRefGoogle Scholar
  31. 31.
    Carlet J: Rapid diagnostic methods in the detection of sepsis [review]. Infect Dis Clin North Am 1999, 13:483–494, xi. This is a useful review of emerging diagnostic considerations in sepsis.PubMedCrossRefGoogle Scholar
  32. 32.
    Dutka-Malen S, Evers S, Courvalin P: Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 1995, 33:1434.PubMedGoogle Scholar
  33. 33.
    Einsele H, Hebart H, Roller G, et al.: Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 1997. 35:1353–1360.PubMedGoogle Scholar
  34. 34.
    Flahaut M, Sanglard D, Monod M, et al.: Rapid detection of Candida albicans in clinical samples by DNA amplification of common regions from C. albicans-secreted aspartic proteinase genes. J Clin Microbiol 1998, 36:395–401.PubMedGoogle Scholar
  35. 35.
    Kane TD, Alexander JW, Johannigman JA: The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg 1998, 227:1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Wallet F, Roussel-Delvallez M, Courcol RJ: Choice of a routine method for detecting methicillin-resistance in staphylococci. J Antimicrob Chemother 1996, 37:901–909.PubMedCrossRefGoogle Scholar
  37. 37.
    Dellinger RP: Current therapy for sepsis. Infect Dis Clin North Am 1999. 13:495–509.PubMedCrossRefGoogle Scholar
  38. 38.
    Cronin L, Cook DJ, Carlet J, et al.: Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995, 23:1430–1439.PubMedCrossRefGoogle Scholar
  39. 39.
    Lefering R, Neugebauer EA: Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med 1995. 23:1294–1303.PubMedCrossRefGoogle Scholar
  40. 40.
    Zeni F, Freeman B, Natanson C: Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment [editorial; comment]. Crit Care Med 1997, 25:1095–1100. These authors provide a comprehensive discussion of anti-inflammatory therapies in the treatment of sepsis.PubMedCrossRefGoogle Scholar
  41. 41.
    Murakami K, Okajima K, Uchiba M, et al.: Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 1996, 87:642–647.PubMedGoogle Scholar

Copyright information

© Current Science Inc 2000

Authors and Affiliations

  • Lindsey R. Baden
    • 1
  • Barry I. Eisenstein
    • 2
  1. 1.Division of Infectious DiseaseBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  2. 2.Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations