Hypertension and Reproduction

Abstract

Purpose of Review

Many aspects of reproduction have been associated with increased blood pressure and impaired glucose metabolism that reveals a subsequent increased risk of cardiovascular disease. The aim of this review is to assess reproductive life factors associated with an increased risk of hypertension and cardiovascular disease, e.g., early life programming, sexual, and reproductive health in men and women.

Recent Findings

Impaired fetal growth, with low birth weight adjusted for gestational age, has been found associated with hypertension in adulthood. Erectile dysfunction, currently considered an early diagnostic marker of cardiovascular disease preceding the manifestation of coronary artery disease by several years, frequently coexisting with hypertension, could also be exacerbated by some antihypertensive drugs. Male hypogonadism or subfertility are associated with increased cardiovascular risk. Hypertensive disorders in pregnancy including preeclampsia represent a major cause of maternal, fetal and neonatal morbidity, and mortality. The risk of developing preeclampsia can be substantially reduced in women at its high or moderate risk with a low dose of acetylsalicylic acid initiated from 12 weeks of gestation. An increased risk of hypertension in women following invasive-assisted reproductive technologies has been newly observed. Blood pressure elevation has been noticed following contraceptive pill use, around the menopause and in postmenopausal age. Furthermore, drug treatment of hypertension has to be considered as a factor with a potential impact on reproduction (e.g., due to teratogenic drug effects).

Summary

In summary, a deeper understanding of reproductive life effects on hypertension and metabolic abnormalities may improve prediction of future cardiovascular disease.

Introduction

The reproductive system is shaped by evolution and is of fundamental importance for survival of mankind. Many complicated processes interact to control reproductive capacity and fertility [1, 2]. The reproductive system is sensitive and vulnerable with potential consequences of infertility, fetal loss, pregnancy-related diseases, and hormonal imbalance to impaired survival of new-born children. The World Health Organization (WHO) has, traditionally, focused on reproductive health and preventive measures concerning mother and child as an investment into future adult health [3]. Recently, this issue has expanded to include preconception counseling to improve the health of young women planning for pregnancy, (e.g., folic acid supplementation) [4].

In cardiovascular medicine, recent guidelines have emphasized the role of reproductive history in women when evaluating cardiovascular risk [5], i.e., history of pregnancy-induced complications (gestational hypertension, preeclampsia [6], gestational diabetes), premature menopause, or exposure to sex hormones such as hormonal contraceptives or hormonal replacement therapy in menopause that may increase blood pressure (BP) levels. Similarly, in men, information on sexual and reproductive history, as exemplified by the role of erectile dysfunction (ED) as an early marker of endothelial dysfunction and atherosclerosis [7] should be collected. Further, information on cardiometabolic comorbidities that have been recently linked to male infertility should also be obtained [8]. A list of reproductive factors associated with hypertension is provided in Table 1.

Table 1 (A) Reproductive factors associated with hypertension; versus (B) hypertension, or its treatment, associated with reproductive factors

The aim of this review is to explore examples of factors of reproductive life, including early life programming, sexual health, male hypogonadism, and female reproductive history that have been associated with increased risk of hypertension and cardiovascular disease (CVD) in later life. Research devoted to a better understanding of these observed associations could provide new insights and help develop new strategies for the prevention and treatment of hypertension and CVD, e.g., targeting new risk groups for screening and intervention. Health problems linked to reproduction could increase the risk of hypertension, while hypertension or its drug treatment may have an impact on reproductive risk conditions, e.g., preeclampsia and erectile dysfunction.

Early Life Programming of Adult Hypertension and Cardiovascular Risk

Several studies have documented low birth weight, or low birth weight in relation to gestational age (small-for gestational-age; SGA), a possible consequence of intra-uterine growth retardation (IUGR), as risk markers for future BP elevation and hypertension in adult life. However, these exposures have not always been measured in the same study. Early studies by Gennser [9], Barker [10], and Lithell [11] have shown evidence to support this association, first in young males [9, 12], and later in adult men and women. Several meta-analyses have confirmed the relationship [13, 14], even though not always consistent as some studies failed to show the association [15]. This inconsistency likely reflects methodological differences among studies, i.e., the imprecise determination of gestational age and screening measurement of (office) BP. The association between adverse early life factors and adult BP elevation has been confirmed in diverse ethnic groups in various parts of the world [16, 17].

Low birthweight/SGA were also found to be associated with an increased risk for the development of ischemic heart disease [18] and type 2 diabetes in adulthood [19]. Ischemic heart disease is related to both neonatal and postneonatal morbidity and, therefore, to both intrauterine and postnatal environments [18]. The links may include elevated BP and as yet unknown processes established in early postnatal life. According to Barker [10], this could be a consequence of poor nutrition in pregnant women, the effects of unhealthy lifestyle (smoking, alcohol consumption) or impaired placental function. Other researchers have shown that the immediate postnatal period is also important. Children born small-for-gestational age (SGA) because of IUGR are preprogrammed in utero to enter a world of calorie restriction, but if they are exposed to a postnatal world of nutritional overflow (“mis-match”) with rapid catch-up growth, their risk for developing CVD could increase further in adulthood, e.g., present as adverse cardiometabolic health [20]. This hypothesis is further developed in the Developmental Origin of Health and Disease (DOHaD) concept, as promoted by the DOHaD Society (www.dohad.org). Postnatal feeding may be of great importance for the different unfavorable postnatal phenotypes, and breast feeding is strongly recommended to prevent them.

Mechanisms Linking Early Life Factors with Cardiovascular Risk

Some studies have documented that children born with SGA or with a low birth weight have disturbed neuroendocrine function with a relative adrenal hyperactivity in adulthood [21]. Increased sympathetic nervous activation has been also shown in animal studies [22]. In addition, impaired fetal growth has been associated with a lower number of nephrons [23] and thus a tendency for impaired renal function, causing impaired sodium excretion. Finally, impaired insulin sensitivity and thereby increased insulin resistance due to the defects in the evolution of skeletal muscle tissue and its metabolism [24] could contribute to the development of hyperinsulinemia and, consequently, increased sodium retention, inducing BP elevation. An association between birth weight and insulin resistance was found, but the association was reversed for those born preterm. The authors emphasized the need to “stratify by gestational age” in analysis of both previous and future studies [24].

The possible link between early life factors and increased cardiovascular risk in the offspring of pregnant women with poor nutrition, unhealthy lifestyle (smoking, alcohol intake) or impaired placental function has remained controversial. Some researchers argue that genetic factors may explain the link between hypertension in the mother, SGA of the newborn, and development of hypertension in the offspring in adult life [25].

Changes in the vascular system of growth-retarded babies include less developed capillaries and probably lower elastin accumulation in the media of elastic arteries, with a possible consequence of impaired elasticity promoting arterial stiffness [26] and increased augmentation pressure index [27]. The divergent results from various studies could be explained by differences in measurement techniques, as well as by the differential effects of impaired fetal growth on the one hand, and those of prematurity on the other. Both conditions could lead to low birth weight by different mechanisms.

Sexual Life, Erectile Dysfunction, and Cardiovascular Risk

Sexual function represents an integral part of human general health and wellbeing. Erectile dysfunction (ED), a condition frequently co-existing with hypertension, contributes significantly to the impaired health–related quality of life of both hypertensive patients and their sexual partners [28]. The prevalence of ED in hypertensive individuals is approximately twice that of normotensive individuals. However, ED remains underreported, underrecognized, and undertreated in hypertensive patients [29]. ED was included for the first time ever in the 2013 ESH/ESC Guidelines for the management of arterial hypertension [30].

Erectile dysfunction is considered to be of vasculogenic origin in the vast majority of patients. It is an early diagnostic marker of CVD, preceding the manifestation of coronary artery disease by 3–5 years [31]. Consistent with the “artery size hypothesis”, it has been assumed that vascular lesions predisposing to CVD develop earlier in the small diameter penile arteries (1–2 mm) than in larger arteries, including the coronary arteries (3–4 mm) [32].

Further, ED shares modifiable risk factors with hypertension. Randomized clinical trials have shown lifestyle modification to be of clinical benefit in improving ED [33]. Lifestyle measures that reduce the risk of ED, hypertension, and the risk of BP-related cardiovascular complications include smoking cessation, weight reduction and maintenance, regular physical exercise, moderation of alcohol consumption, and dietary changes.

Effects of Antihypertensive Drugs on Erectile Function

Data regarding the effects of antihypertensive drug therapy on ED are limited, usually address monotherapy only, and come mainly from observational studies. Data from randomized studies addressing combination therapy are urgently needed [34, 35]. To date, ED has never been defined as a primary endpoint in any large clinical trial of antihypertensive drugs.

Available data suggest that older classes of antihypertensive agents (thiazides, beta-receptor blockers) are inferior to the newer ones (RAS blockers, calcium antagonists) regarding ED [36]. In particular, the adverse effects of beta-blockers have been repeatedly confirmed, with the only possible exception of nebivolol, which has been reported to exert beneficial vasodilatory effects, possibly due to nitric oxide (NO) modulation.

Diuretics are also believed to impair ED, even when used in combined antihypertensive therapy [35]. The type and dosage of the diuretic may be of importance. Although data regarding calcium antagonists and angiotensin-converting enzyme (ACE) inhibitors are not yet definitive, a neutral effect on ED has been reported [36]. Angiotensin receptor blockers (ARBs) may positively affect ED [37] and have been recommended as first-line treatment in patients with pre-existing ED. However, the ONTARGET/TRANSCEND trials did not demonstrate a benefit of an ARB on ED when added to previous multidrug regimen in high-risk hypertensive patients [38]. Available data suggest significant benefits in erectile function when prior antihypertensive drug therapy is switched to either nebivolol or a renin-angiotensin system blocker.

Phosphodiesterase-5 Inhibitors in Patients with Hypertension

Over the past 15–20 years, phosphodiesterase-5 (PDE-5) inhibitors have emerged as an efficacious therapy for ED. The use of PDE-5 inhibitors in hypertensive patients provides important benefits. PDE-5 inhibitors exert their beneficial vasodilating effects, i.e., contributing to improved erectile function, mainly through improved adherence. Hypertensive men with ED are more likely to initiate and add antihypertensive medication when receiving PDE-5 inhibitors [39].

PDE-5 inhibitors are, in general, well tolerated and relatively safe, but their use should follow appropriate consultation. In hypertensive patients treated with nitrates, PDE-5 inhibitors decrease systolic and diastolic BP. When PDE-5 inhibitors are co-administered with organic nitrates such as nitroglycerine and isosorbide mononitrate, unpredictable vasodilatory, and hypotensive effects may be observed. Co-administration of PDE-5 inhibitors and nitrates is therefore contraindicated.

Finally, ED is included in both European and US hypertension and cardiovascular prevention guidelines [40, 41]. These guidelines state that ED is considered a warning sign for early diagnostic or therapeutic intervention. Compared with older antihypertensive drugs, newer agents (ARBs, ACE inhibitors, calcium antagonists, and vasodilating beta-receptor blockers) have neutral or even beneficial effects on ED. Further, the PDE-5 inhibitors offer new avenues in the management of sexual dysfunction.

Male Hypogonadism, Hypertension and Cardiometabolic Risk

Male hypogonadism is characterized by a deficient production of the male sex hormone testosterone (T). Primary hypogonadism is due to testicular failure, whereas secondary hypogonadism is caused by deficient production of gonadotropins. Compensated hypogonadism is characterized by high luteinizing hormone (LH) levels with normal T.

A clear and internationally recognized definition of male hypogonadism is lacking. Biochemically, T levels below the lower reference of a laboratory cutoff can be considered hypogonadal. Due to significant diurnal variation in T levels, the patient should be fasting, and the blood sample needs to be taken before 10 AM.

The clinical definition of hypogonadism, when considering androgen replacement therapy, is based on both the above biochemical criteria and on the presence of symptoms that can be related to T deficiency.

Prevalence of Male Hypogonadism

In young males, hypogonadism is rare, most often related to other comorbidities. The most frequent chromosomal abnormality, Klinefelterʼs syndrome, occurring in approximately 1:600 boys, is frequently associated with primary (testicular) hypogonadism. An increasing proportion of young hypogonadal men are cancer survivors, either those treated for cancer in childhood or testicular cancer, 30–40% of whom have low T levels.

Among adult males, the most frequent cause of hypogonadism is the age-related decline in T levels. In the European Male Aging Study (EMAS), which included more than 3000 men aged 40–80 years recruited from the general population of eight European countries, almost 23% of the participants presented with primary (2%), secondary (9%), or compensated (12%) hypogonadism [42].

The prevalence of primary and compensated, but not secondary, hypogonadism increases with age [43]. Apart from age, comorbidities and high body mass index (BMI) are important risk factors for hypogonadism.

Restricting the definition of hypogonadism to men presenting with both low T and at least three sexual symptoms, the overall prevalence of late-onset hypogonadism in the EMAS study population was 2.1%, increasing from 0.1% for men 40 to 49 years of age to 5.1% for those aged 70 to 79 years [44].

Some studies have indicated a birth-cohort–related negative secular trend in T levels, and it has been suggested that the possible time-related decrease in sperm production is accompanied by increasing Leydig cell functional impairment related to adverse effects of environment and/or lifestyle on the fetal testes [45].

Male Hypogonadism and Cardiovascular Risk

Several studies have shown that low T is a marker of decreased life expectancy. During a 25-year follow-up period, men less than 50 years of age with T levels below the 5th percentile experienced twice as high mortality as those with normal hormone levels, and CVD was the most significant single cause of the increased mortality rate [46].

Other studies have shown an association between male childlessness or infertility and risk of CVD, hypertension, and metabolic syndrome [47, 48]. The prevalence of hypogonadism is significantly increased among men with reduced fertility [49]. However, the unresolved question is whether T deficiency is the cause or the consequence of these conditions. It seems likely that hypogonadism may cause CV morbidity since T has been found to have an anti-inflammatory effect and to increase insulin sensitivity [50]. Therefore, a bidirectional association might be plausible, but it cannot be excluded that adverse early life events may play an etiological role for both reproductive dysfunction and CVD risk.

Testosterone Replacement in Male Hypogonadism

Testosterone replacement in hypogonadal men aims to normalize serum T levels and improve the subjective symptoms, but there is lack of randomized double-blind placebo-controlled studies documenting the effects of T replacement on comorbidities. The existing data are conflicting, ranging from reports indicating that T is protective against CVD [51] to studies showing the opposite effect [52]. Based on the present level of knowledge, male hypogonadism is considered a marker of increased risk of other diseases, most importantly CVD and the metabolic syndrome. The recommendation is, therefore, that treatment and prevention of metabolic and cardiovascular disorders should be carried out according to current guidelines also in hypogonadic men.

Further, male infertility, as presented by impaired semen quality [53], seeking for infertility treatment [54, 55], or childlessness in married men has been linked to increased risk of cardiometabolic disease and mortality. It is not clear to what extent this association is related to increased prevalence of hypogonadism among men with fertility problems in general, as also other causes may exist [49].

Female Reproductive Health and Cardiovascular Risk

Polycystic Ovary Syndrome

Over the past 25 years, three sets of diagnostic criteria for polycystic ovarian syndrome (PCOS) have been developed by different academic societies and conferences [56]. Using metabolic dysfunction as a remote complication of PCOS, the guidelines published in 2006 recommended that PCOS be defined, first and foremost, as a diagnosis of androgen excess accompanied by either oligo- or anovulation and/or polycystic ovarian morphology after exclusion of related mimicking disorders [57]. The prevalence of PCOS in premenopausal women varies between 4 and 21%, depending on the definition used and the population assessed (referral-based clinical patients or unselected population) [58], possibly making this syndrome the most common endocrine metabolic disorder in women of reproductive age. There is a higher prevalence of overweight and obesity in PCOS women compared with controls [59].

Obese women with PCOS may have higher rates of insulin resistance, hyperinsulinemia, metabolic dysfunction, and hyperandrogenism. There are multiple short-term and long-term consequences of PCOS. The short-term ones include dermatological concerns (hirsutism, acne, androgenic alopecia), reproductive dysfunction (anovulatory infertility in 80% of cases), and mood disturbances (depression or anxiety). Long-term complications include metabolic dysfunction (including a higher risk of developing type 2 diabetes, non-alcoholic fatty liver disease), metabolic syndrome, hypertension, and possible vascular complications [60]. The increased risk of hypertension in PCOS is linked to metabolic dysfunction with mechanisms similar to those in hypogonadal men [61].

Women with PCOS have increased risk for hormone-sensitive neoplasias, including endometrial, ovarian, and breast cancer.

Hypertension in Reproductive Age

Women of reproductive age (arbitrarily defined as up to the age of 44 years) have a relatively low prevalence of hypertension, 8–9% [62, 63]. About 50% of hypertensive women of reproductive age are treated with antihypertensive drugs, thus requiring preconception counseling. The prevalence of hypertension is higher in black women and increases with BMI in all ethnicities. Young women with hypertension are at increased risk of developing CVD [64].

Women with chronic hypertension are at risk of experiencing a number of serious complications in pregnancy [65]:

  • Superimposed preeclampsia (25.9%; 95% CI 21.0–31.5%)

  • Cesarean section (41.4%; 95% CI 35.5–47.7%)

  • Preterm delivery < 37 weeks’ gestation (28.1%; 95% CI 22.6–34.4%),

  • Birth weight < 2500 g (16.9%; 95% CI 13.1–21.5%)

  • Neonatal unit admission (20.5%, 95% CI 15.7–26.4%)

  • Perinatal death (4.0%; 95% CI 2.9–5.4%)

The risk of developing preeclampsia can be substantially reduced in women with pre-existing hypertension if low-dose (100–150 mg per day) acetylsalicylic acid (ASA) is initiated from 12 weeks´ gestation until weeks 36–37 [66, 67].

ACE inhibitors, ARBs and direct renin inhibitors are strictly contraindicated in pregnancy, and thus should not be prescribed to women of childbearing potential without reliable contraception. Beta-receptor blockers may induce fetal bradycardia, growth retardation and hypoglycemia;. Consequently, if used, their type and dose of beta-receptor blockers in pregnant women should be carefully selected, with atenolol best avoided [66].

Hypertension in Pregnancy

Hypertension complicates 5–10% of pregnancies, with rates likely to increase due to increasing prevalence of obesity and increasing age of pregnant women. Hypertension in pregnancy is not a single entity, and we must distinguish between pre-existing hypertension (preceding pregnancy or developing between 20 weeks of gestation; usually persisting more than 42 days postpartum) and gestational hypertension, a condition specifically related to hypertension, developing after 20 weeks of gestation and usually resolving within 42 days postpartum. Preeclampsia is defined as gestational hypertension with significant proteinuria (> 0.3 g/24 h or an albumin-to-creatinine ratio ≥ 30 mg/mmol) [66].

Non-pharmacological management of hypertension in pregnancy has a limited role, as randomized studies of dietary and lifestyle interventions showed only minimal effects on pregnancy outcome [68]. Dietary counseling during pregnancy resulted only in a slight reduction of BP (0.66 mmHg for systolic BP and 2.76 mmHg for diastolic BP [69]. Regular exercise may be continued with caution. Obese women should be advised to avoid a weight gain of more than 6.8 kg [70].

There is general consensus that severe hypertension in pregnancy (usually defined by obstetricians as BP ≥160/110 mmHg) should be treated, with values ≥170/110 mmHg considered an emergency when hospitalization is indicated [66]. The selection of antihypertensive drugs and route of their administration depend on the expected time of delivery. ACE inhibitors, ARBs and direct renin inhibitors are contraindicated in pregnancy because of their teratogenic effects. Intravenous labetalol, oral methyldopa or oral nifedipine are recommended. Intravenous hydralazine has been associated with higher rates of perinatal adverse effects and thus should no longer be the drug of choice [71]. Alternatively, intravenous (i.v.) urapidil can be used. Sodium nitroprusside should be reserved for extreme emergencies and administered for the shortest possible period of time because prolonged treatment is associated with increased risk of fetal cyanide poisoning and increased intracranial pressure in the pregnant woman (with potential worsening of cerebral edema). When preeclampsia is associated with pulmonary edema, i.v. nitroglycerine is recommended. Despite lack of evidence, the European guidelines [66, 72] recommend initiation of drug treatment in all women with persistent BP elevations ≥150/95 mmHg and at values >140/90 mmHg in women with:

  • Gestational hypertension, or

  • Pre-existing hypertension with superimposed gestational hypertension or

  • Hypertension with subclinical organ damage or symptoms at any time during pregnancy.

The issue of treatment benefit, tight versus less tight control of hypertension in pregnancy was addressed by the Control of Hypertension in Pregnancy Study (CHIPS). Although the tight control of hypertension was associated with less development of severe maternal hypertension, no difference in the risk of adverse perinatal outcomes and overall serious maternal complications was found [73]. A secondary analysis of data from CHIPS in severe hypertension clearly showed that women developing severe hypertension have higher rates of pregnancy loss or higher neonatal care for longer than 48 h, birth rate less than the 10th percentile, preeclampsia, preterm delivery, platelets less than 109/L, elevated liver enzymes with symptoms, and maternal length of hospital stay of 10 days or longer. Maternal death or serious maternal complications were more common in women with severe hypertension and less tight control [74]. There was also a trend for increased rates of SGA newborns among women in the tight arm who had chronic hypertension [73]. Thus, treatment of maternal hypertension may possibly lead to intrauterine programming, increasing the neonate’s lifetime risk of CVD.

Methyldopa, beta-blockers (most data available for labetalol, a combined alpha- and beta-adrenoreceptor-blocking agent with a more potent effect at beta-receptors in man) and calcium antagonists are the preferred drugs of choice in these guidelines. Magnesium sulfate i.v. is recommended for the prevention of preeclampsia and treatment of seizures (caution if given concomitantly with calcium-channel blockers – risk of hypotension). Women developing gestational hypertension, or preeclampsia in particular, are at increased risk of hypertension, stroke, ischemic heart disease and venous thromboembolism in later life [75,76,77]. A systematic review and meta-analysis of 22 studies including more than 250,000 women with preeclampsia found preeclampsia to be associated with a fourfold increase in incident heart failure and a twofold increase in the risk of coronary heart disease, stroke and cardiovascular death [78]. Thus, pregnancy offers a unique window for the identification of women at risk of future development of CVD. It is of utmost importance that women with hypertensive disorders in pregnancy are informed about their future risk of developing CVD. There is a need to establish systematic follow-up aimed at detection and control of all major CVD risk factors [79, 80].

Assisted Reproductive Technologies (ART)

Children born by these techniques now make up 2–8% of births in developed countries. It is estimated that more than 6 million individuals have been conceived using ART worldwide [81]. Earlier studies did not show an apparent increase in hypertension risk among infertile women or among those with previous fertility treatment [82]. More recently, women who conceived through ART have been shown to be at increased risk of hypertensive disorders in pregnancy. A large retrospective stratified analysis of ART (596,520 mothers; 30.6% ART mothers) indicated that multiple pregnancies after ART are the single most likely explanation for the increased rate of gestational hypertension or preeclampsia among ART mothers [83]. More recently, a meta-analysis including 66 longitudinal studies (7,038,029 pregnancies; 203,375 following any ART) found that all pregnancy-related hypertensive disorders, independent of gestation order, were increased following any invasive ART [+54% (95% CI: 39%–70%), gestational hypertension +79% (95% CI: 24%–157%), and preeclampsia +75% (95% CI: 50%–103%)] [84].

There is growing evidence that ART alters the cardiovascular and metabolic phenotype of offspring [85]. In a recently published Swiss study, 54 young apparently healthy individuals conceived using ART were examined after 5-year follow-up (mean age, 16.5 ± 2.3 years) and compared with age- and sex-matched controls [86]. Flow-mediated dilatation was significantly lower, whereas pulse wave velocity (PWV) and intima-media thickness (IMT) were higher in ART offspring compared with the control group. The significant differences in BP were confirmed by 24-h ambulatory BP monitoring [86].

Premature Ovarian Insufficiency

Premature ovarian insufficiency (POI) is a clinical syndrome defined by loss of ovarian activity before the age of 40 years. It is characterized by menstrual disturbances (amenorrhea or oligomenorrhea) with raised gonadotropin and low estradiol levels. The European Society of Human Reproduction and Embryology guideline recommends the following diagnostic criteria: (i) oligo/amenorrhea for at least 4 months and (ii) an elevated follicle-stimulating hormone (FSH) > 25 IU/l on two occasions at least 4 weeks apart [87]. Despite this, approx. 5–10% of women with confirmed POI become pregnant without medical intervention. The estimated prevalence of POI is about 1% in the general population of women in their 40’s. Chromosomal analysis should be performed in all women with non-iatrogenic POI; however, the cause of POI remains not identified in almost 50% of women with POI (idiopathic POI). Women with POI have reduced life expectancy, mostly due to CVD. When diagnosed with POI, the patients should be screened for CVD risk factors on an annual basis with the intent to reduce risk by lifestyle changes. Despite a lack of longitudinal outcome data, early initiated hormone replacement therapy (HRT) is strongly recommended to reduce the risk of developing CVD [87]. Hormone replacement therapy should continue at least until the average age of natural menopause (age 50–51 years in Europe). Patients with Turner syndrome, a genetically determined form of POI, with the most prevalent karyotype 45 (X, 0), have a higher prevalence of aortic coarctation and bicuspid aortic valve, thus increasing the risk of infective endocarditis. Their risk of developing CVD is doubled, compared with individuals with other causes of POI. The typical age of aortic dissection in Turner syndrome is 35 years [88]. Pregnancy imposes stress on the aorta; pregnancy-induced hypertension such as preeclampsia may promote direct vascular damage, aneurysm formation, and, if uncontrolled, induce aortic rupture. Pregnancies in women with Turner syndrome are at a very high risk of both obstetric and non-obstetric complications and should be managed in specialized centers with cardiologist supervision.

Oral Contraception and Blood Pressure

The use of combined oral contraceptives is associated with a mild elevation of BP in most women, and overt hypertension may develop in about 5% [89, 90]. Newer preparations with low estrogen and progestogen content seem to be safer. The progestogen-only pill has no effect on BP and is a reasonable alternative for women with hypertension [91]. In a meta-analysis including 24 studies with 270,284 participants, the duration of oral contraceptive use was positively associated with the risk of developing hypertension, increasing by 13% for every 5 years of oral contraceptive use [92].

Blood pressure should be measured at least every 6 months in women using oral contraception. Should BP rise significantly, oral contraceptives should be withdrawn and another contraception technique used [93]. If BP fails to normalize within 3 months of oral contraception withdrawal, the woman should be evaluated and likely treated for hypertension. Oral combined contraception is not recommended for smokers aged over 35 years, for those with systemic autoimmune disease such as systemic lupus erythematosus, or in women with a history of thromboembolic disease. Progestin-only pills, the contraceptive etonogestrel implants or levonorgestrel-releasing intrauterine devices (LNG IUD) might be acceptable alternative options [94]. Oral contraceptives should be given with caution to women with migraine-type attacks [95].

BP in the Perimenopausal and Postmenopausal Periods

Hypertension is less prevalent in young premenopausal women than in their male counterparts, there is a steeper increase in systolic BP in women aged 50 to 55 years, resulting in increased prevalence of hypertension in the postmenopausal years. Genetic factors, environmental factors, and change in sex hormone levels contribute to the development of hypertension in postmenopausal women [96]. There is not only a decrease in estradiol and an increase in testosterone but also a change in the estrogen/androgen ratio, resulting in a relative androgen excess that has been proposed to be associated with increased prevalence of hypertension in postmenopausal women [97]. Sex hormone changes are linked with endothelial dysfunction [98], which may also contribute to the development of hypertension after menopause. Endothelial dysfunction is associated with a reduction in NO and an increase in endothelin, both contributing to salt sensitivity. An increase in angiotensin II and endothelin and a reduction in NO may induce increased oxidative stress, thus contributing to an increase in renal vasoconstriction and causing hypertension. Changes in sex hormones are also usually associated with an increase in body weight and sympathetic activation. Further, aging has been found to be associated with a greater increase in sympathetic nervous activity in women than in men [99]. Gender differences in the pathophysiology of hypertension have no major implications for treatment except in the setting of pregnancy. The response to antihypertensive agents and beneficial effects of BP lowering appear to be similar in women and men. However, ACE inhibitors and angiotensin-receptor blockers should be avoided in pregnant women and those of childbearing potential because of their teratogenic effects [100].

In conclusion, hypogonadism is a major determinant of metabolic changes (insulin resistance) and increased prevalence of hypertension both in men (hypoandrogenicity) and women (relative hyperandrogenicity), particularly in the postmenopausal period. The relationship between androgen signaling and NF-kB could possibly explain the pathophysiological mechanisms leading to development of endothelial dysfunction and hypertension [101].

Conclusions

Human reproduction is of fundamental importance for the survival of mankind. It has been shaped by evolution and resembles that of other mammals in many ways, but not entirely. The role of covert human ovulation (influencing male-female interaction and mate choice) and prolonged breast feeding in women, together with the fact that women live up to 1/3 of their lives in postfertility period, is unique for human beings. Human reproduction is also influenced by societal, cultural, and environmental factors.

The importance of early life programming for risk of developing hypertension and CVD in adults is an impetus for preventive measures to secure maternal and child health—an investment into improved cardiovascular health, in both mothers and their offspring throughout their lives. Efforts to prevent preeclampsia and gestational diabetes are needed, as well as efforts to improve the treatment of these conditions. The discovery of new biomarkers may improve early diagnosis of preeclampsia [102].

A better understanding of these associations could enhance mapping of the mechanisms of BP elevation and vascular aging as well as those promoting cardiometabolic disease. New avenues of research should be promoted, such as the role of gut microbiota in the association between maternal factors and child health [103] as well as increased arterial stiffness in women, as recently reported [104]. Novel treatment for sexual dysfunction, new contraceptive agents, assisted reproduction [105], and strategies for preventing pregnancy complications should be tested in randomized clinical trials, with the ultimate aim to improve reproductive health.

Abbreviations

ACE:

Angiotensin converting enzyme

ARB:

Angiotensin receptor blockers

ART:

Assisted reproductive technologies

ASA:

Acetylsalicylic acid

BMI:

Body mass index

BP:

Blood pressure

CI:

Confidence interval

CVD:

Cardiovascular disease

DOHaD:

Developmental Origin of Health and Disease

ED:

Erectile dysfunction

EMAS:

European Male Aging Study

IMT:

Intima-media thickness

LH:

Luteinizing hormone

LNG IUD:

Levonorgestrel-releasing intrauterine devices

ONTARGET:

Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial

PCOS:

Polycystic ovarian syndrome

PDE-5:

Phosphodiesterase-5

POI:

Premature ovarian insufficiency

PWV:

Pulse wave velocity

RAS:

Renin-angiotensin system

SGA:

Small-for-gestational age

T:

Testosterone

TRANSCEND:

Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease

WHO:

World Health Organization.

References

  1. 1.

    Bolund E, Lummaa V. The effects of resource availability and the demographic transition on the genetic correlation between number of children and grandchildren in humans. Heredity (Edinb). 2017;118(2):186–92.

    CAS  Google Scholar 

  2. 2.

    Courtiol A, Pettay JE, Jokela M, Rotkirch A, Lummaa V. Natural and sexual selection in a monogamous historical human population. Proc Natl Acad Sci U S A. 2012;109(21):8044–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    WHO. Guidelines on preventing early pregnancy and poor reproductive health outcomes among adolescents in developing countries. Geneva: World Health Organization; 2011.

    Google Scholar 

  4. 4.

    Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet. 2018;391(10132):1830–41.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Heida KY, Bots ML, de Groot CJ, van Dunné FM, Hammoud NM, Hoek A, et al. Cardiovascular risk management after reproductive and pregnancy-related disorders: a Dutch multidisciplinary evidence-based guideline. Eur J Prev Cardiol. 2016;23(17):1863–79.

    PubMed  Google Scholar 

  6. 6.

    Muijsers HEC, Roeleveld N, van der Heijden OWH, et al. Consider preeclampsia as a first cardiovascular event. Curr Cardiovasc Risk Rep. 2019;13:21.

    Google Scholar 

  7. 7.

    Gandaglia G, Briganti A, Jackson G, Kloner RA, Montorsi F, Montorsi P, et al. A systematic review of the association between erectile dysfunction and cardiovascular disease. Eur Urol. 2014;65(5):968–78.

    PubMed  Google Scholar 

  8. 8.

    Capogrosso P, Ventimiglia E, Boeri L, Cazzaniga W, Chierigo F, Montorsi F, et al. Male infertility as a proxy of the overall male health status. Minerva Urol Nefrol. 2018;70(3):286–99.

    PubMed  Google Scholar 

  9. 9.

    Gennser G, Rymark P, Isberg PE. Low birth weight and risk of high blood pressure in adulthood. Br Med J (Clin Res Ed). 1988;296(6635):1498–500.

    CAS  PubMed Central  Google Scholar 

  10. 10.

    Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301(6746):259–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Koupilová I, Leon DA, Lithell HO, Berglund L. Size at birth and hypertension in longitudinally followed 50-70-year-old men. Blood Press. 1997;6(4):223–8.

    PubMed  Google Scholar 

  12. 12.

    Nilsson PM, Ostergren PO, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys. J Hypertens. 1997;15(12 Pt2):1627–31.

    CAS  PubMed  Google Scholar 

  13. 13.

    Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996;14(8):935–41.

    CAS  PubMed  Google Scholar 

  14. 14.

    Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18(7):815–31.

    CAS  PubMed  Google Scholar 

  15. 15.

    Libby G, McEwan SR, Belch JJ, Morris AD. Birth weight does not predict blood pressure in a young working population: a sharp (Scottish Heart and Arterial Disease Risk Prevention) study. Ann Epidemiol. 2008;18(4):298–301.

    PubMed  Google Scholar 

  16. 16.

    Winder NR, Krishnaveni GV, Hill JC, Karat CL, Fall CH, Veena SR, et al. Placental programming of blood pressure in Indian children. Acta Paediatr. 2011;100(5):653–60.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hult M, Tornhammar P, Ueda P, Chima C, Bonamy AK, Ozumba B, et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS One. 2010;5(10):e13582.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Barker DJ, Osmond C, Law CM. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health. 1989;43(3):237–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia. 1993;36(3):225–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Phillips DI, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000;35(6):1301–6.

    CAS  PubMed  Google Scholar 

  22. 22.

    Baum M. Role of renal sympathetic nerve activity in prenatal programming of hypertension. Pediatr Nephrol. 2018;33(3):409–19.

    PubMed  Google Scholar 

  23. 23.

    Zohdi V, Sutherland MR, Lim K, Gubhaju L, Zimanyi MA, Black MJ. Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on nephron number and long-term renal health. Int J Nephrol. 2012;2012:136942.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    McKeigue PM, Lithell HO, Leon DA. Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth. Diabetologia. 1998;41(10):1133–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51(5):804–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Nilsson PM, Lurbe E, Laurent S. The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome. J Hypertens. 2008;26(6):1049–57.

    CAS  PubMed  Google Scholar 

  27. 27.

    Sperling J, Nilsson PM. Does early life programming influence arterial stiffness and central hemodynamics in adulthood? J Hypertens. 2020;38(3):481–8.

  28. 28.

    Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts male aging study. J Urol. 1994;151:54–61.

    CAS  PubMed  Google Scholar 

  29. 29.

    Viigimaa M, Vlachopoulos C, Lazaridis A, Doumas M. Management of erectile dysfunction in hypertension: tips and tricks. World J Cardiol. 2014;6(9):908–15.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    CAS  PubMed  Google Scholar 

  31. 31.

    Manolis A, Doumas M. Antihypertensive treatment and sexual dysfunction. Curr Hypertens Rep. 2012;14:285–92.

    CAS  PubMed  Google Scholar 

  32. 32.

    Montorsi P, Ravagnani PM, Galli S, Rotatori F, Briganti A, Salonia A, et al. The artery size hypothesis: a macrovascular link between erectile dysfunction and coronary artery disease. Am J Cardiol. 2005;96:19M–23M.

    PubMed  Google Scholar 

  33. 33.

    Gupta BP, Murad MH, Clifton MM, Prokop L, Nehra A, Kopecky SL. The effect of lifestyle modification and cardiovascular risk factor reduction on erectile dysfunction: a systematic review and meta-analysis. Arch Intern Med. 2011;171(20):1797–803.

    PubMed  Google Scholar 

  34. 34.

    Viigimaa M, Doumas M, Vlachopoulos C, Anyfanti P, Wolf J, Narkiewicz K, et al. Hypertension and sexual dysfunction: time to act. J Hypertens. 2011;29(2):403–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Doumas M, Viigimaa M, Papademetriou V. Combined antihypertensive therapy and sexual dysfunction: terra incognita. Cardiology. 2013;125(4):232–4.

    CAS  PubMed  Google Scholar 

  36. 36.

    Grimm RH Jr, Grandits GA, Prineas RJ, McDonald RH, Lewis CE, Flack JM, et al. Long-term effects on sexual function of five antihypertensive drugs and nutritional hygienic treatment in hypertensive men and women. Treatment of Mild Hypertension Study (TOMHS). Hypertension. 1997 Jan;29(1 Pt 1):8–14.

    CAS  PubMed  Google Scholar 

  37. 37.

    Dusing R. Effect of the angiotensin II antagonist valsartan on sexual function in hypertensive men. Blood Pressure (Suppl). 2003;2:29–34.

    CAS  Google Scholar 

  38. 38.

    Böhm M, Baumhäkel M, Teo K, Sleight P, Probstfield J, Gao P, et al. Erectile dysfunction predicts cardiovascular events in high-risk patients receiving telmisartan, ramipril, or both: the Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial/Telmisartan Randomized AssessmeNT Study in ACE iNtolerant subjects with cardiovascular Disease (ONTARGET/TRANCEND) trials. Circulation. 2010;121:1439–46.

    PubMed  Google Scholar 

  39. 39.

    Scranton RE, Lawler E, Botteman M, Chittamooru S, Gagnon D, Lew R, et al. Effect of treating erectile dysfunction on management of systolic hypertension. Am J Cardiol. 2007;100:459–63.

    PubMed  Google Scholar 

  40. 40.

    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;2016:37,2315–81.

    Google Scholar 

  41. 41.

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, et al. Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;1097(17):41519–1.

    Google Scholar 

  42. 42.

    Wu FC, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363:123–35.

    CAS  PubMed  Google Scholar 

  43. 43.

    Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93:2737–45.

    CAS  PubMed  Google Scholar 

  44. 44.

    Tajar A, Forti G, O'Neill TW, Lee DM, Silman AJ, Finn JD, et al. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J Clin Endocrinol Metab. 2010;95:1810–8.

    CAS  PubMed  Google Scholar 

  45. 45.

    Andersson AM, Jensen TK, Juul A, Petersen JH, Jorgensen T, Skakkebaek NE. Secular decline in male testosterone and sex hormone binding globulin serum levels in Danish population surveys. J Clin Endocrinol Metab. 2007;92:4696–705.

    CAS  PubMed  Google Scholar 

  46. 46.

    Bentmar Holgersson M, Landgren F, Rylander L, Lundberg Giwercman Y. Mortality is linked to low serum testosterone levels in younger and middle-aged men. Eur Urol. 2017;71:991–2.

    CAS  PubMed  Google Scholar 

  47. 47.

    Bungum AB, Glazer CH, Bonde JP, Nilsson PM, Giwercman A, Sogaard Tottenborg S. Risk of metabolic disorders in childless men: a population-based cohort study. BMJ Open. 2018;8:e020293.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Elenkov A, Al-Jebari Y, Giwercman A. More prevalent prescription of medicine for hypertension and metabolic syndrome in males from couples undergoing Intracytoplasmic sperm injection. Sci Rep. 2018;8:14521.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bobjer J, Bogefors K, Isaksson S, Leijonhufvud I, Akesson K, Giwercman YL, et al. High prevalence of hypogonadism and associated impaired metabolic and bone mineral status in subfertile men. Clin Endocrinol. 2016;85:189–95.

    CAS  Google Scholar 

  50. 50.

    Bobjer J, Katrinaki M, Tsatsanis C, Lundberg Giwercman Y, Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS One. 2013;8:e61466.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Jones TH, Kelly DM. Randomized controlled trials - mechanistic studies of testosterone and the cardiovascular system. Asian J Androl. 2018;20:120–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363:109–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol. 2009;170:559–65.

    PubMed  Google Scholar 

  54. 54.

    Glazer CH, Bonde JP, Eisenberg ML, Giwercman A, Haervig KK, Rimborg S, et al. Male infertility and risk of nonmalignant chronic diseases: a systematic review of the epidemiological evidence. Semin Reprod Med. 2017;35:282–90.

    PubMed  Google Scholar 

  55. 55.

    Glazer CH, Bonde JP, Giwercman A, Vassard D, Pinborg A, Schmidt L, et al. Risk of diabetes according to male factor infertility: a register-based cohort study. Hum Reprod. 2017;32:1474–81.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14:270–84.

    PubMed  Google Scholar 

  57. 57.

    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.

    CAS  PubMed  Google Scholar 

  58. 58.

    Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2013;6:1–13.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Carmina E, Campagna AM, Lobo RA. A 20-year follow-up of young women with polycystic ovary syndrome. Obstet Gynecol. 2012;119(2 Pt 1):263–9.

    PubMed  Google Scholar 

  60. 60.

    Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057.

    PubMed  Google Scholar 

  61. 61.

    Moulana M, Lima R, Reckelhoff JF. Metabolic syndrome, androgens, and hypertension. Curr Hypertens Rep. 2011;13:158–62.

    CAS  PubMed  Google Scholar 

  62. 62.

    Bateman BT, Shaw KM, Kuklina EV, Callaghan WM, Seely EW, Hernández-Díaz S. Hypertension in women of reproductive age in the United States: NHANES 1999-2008. PLoS One. 2012;7:e36171.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Azeez O, Kulkarni A, Kuklina EV, Kim SY, Cox S. Hypertension and diabetes in non-pregnant women of reproductive age in the United States. Prev Chronic Dis. 2019;16:190105.

    Google Scholar 

  64. 64.

    Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. J Am Coll Cardiol. 2007;50:2128–32.

    PubMed  Google Scholar 

  65. 65.

    Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ. 2014;348:g2301.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39:3165–241.

    PubMed  Google Scholar 

  67. 67.

    Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high-risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    CAS  PubMed  Google Scholar 

  68. 68.

    Dodd JM, Turnbull D, McPhee AJ, Deussen AR, Grivell RM, Yelland LN, et al. Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. BMJ. 2014;348:g1285.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Gresham E, Bisquera A, Byles JE, Hure AJ. Effects of dietary interventions on pregnancy outcomes: a systematic review and meta-analysis. Matern Child Nutr. 2016;12(1):5–23.

    PubMed  Google Scholar 

  70. 70.

    Leddy MA, Power ML, Schulkin J. The impact of maternal obesity on maternal and fetal health. Rev Obstet Gynecol. 2008;1:170–8.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Magee LA, Cham C, Waterman EJ, Ohlsson A, von Dadelszen P. Hydralazine for treatment of severe hypertension in pregnancy: meta-analysis. BMJ. 2003;327:955–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:1953–2041.

    CAS  PubMed  Google Scholar 

  73. 73.

    Magee LA, von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015;372:407–17.

    CAS  PubMed  Google Scholar 

  74. 74.

    Magee LA, von Dadelszen P, Singer J, Lee T, Rey E, Ross S, et al. The CHIPS randomized controlled trial (control of hypertension in pregnancy study): is severe hypertension just an elevated blood pressure? Hypertension. 2016;68:1153–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Ray JG, Vermeulen MJ, Schull MJ, Redelmeier DA. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005;366:1797–803.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Black MH, Zhou H, Sacks DA, Dublin S, Lawrence JM, Harrison TN, et al. Hypertensive disorders first identified in pregnancy increase risk for incident prehypertension and hypertension in the year after delivery. J Hypertens. 2016;34:728–35.

    CAS  PubMed  Google Scholar 

  78. 78.

    Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10:e003497.

    PubMed  Google Scholar 

  79. 79.

    Cífková R. Cardiovascular sequels of hypertension in pregnancy. J Am Heart Assoc. 2018;7:e009300.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Smith GN, Louis JM, Saade GR. Pregnancy and the postpartum period as an opportunity for cardiovascular risk identification and management. Obstet Gynecol. 2019;134(4):851–62.

    PubMed  Google Scholar 

  81. 81.

    European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE), Kupka MS, D'Hooghe T, Ferraretti AP, de Mouzon J, Erb K, et al. Assisted reproductive technology in Europe, 2011: results generated from European registers by ESHRE. Hum Reprod. 2016;31:233–48.

    Google Scholar 

  82. 82.

    Farland LV, Grodstein F, Srouji SS, Forman JP, Rich-Edwards J, Chavarro JE, et al. Infertility, fertility treatment, and risk of hypertension. Fertil Steril. 2015;104:391–7.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wang YA, Chughtai AA, Farquhar CM, Pollock W, Lui K, Sullivan EA. Increased incidence of gestational hypertension and preeclampsia after assisted reproductive technology treatment. Fertil Steril. 2016;105:920–6.

    PubMed  Google Scholar 

  84. 84.

    Thomopoulos C, Salamalekis G, Kintis K, Andrianopoulou I, Michalopoulou H, Skalis G, et al. Risk of hypertensive disorders in pregnancy following assisted reproductive technology: overview and meta-analysis. J Clin Hypertens (Greenwich). 2017;19(2):173–83.

    Google Scholar 

  85. 85.

    Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93:1682–8.

    CAS  PubMed  Google Scholar 

  86. 86.

    Meister TA, Rimoldi SF, Soria R, von Arx R, Messerli FH, Sartori C, et al. Association of Assisted Reproductive Technologies with arterial hypertension during adolescence. J Am Coll Cardiol. 2018;72:1267–74.

    PubMed  Google Scholar 

  87. 87.

    European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, et al. ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31:926–37.

    Google Scholar 

  88. 88.

    Gravholt CH, Landin-Wilhelmsen K, Stochholm K, Hjerrild BE, Ledet T, Djurhuus CB, et al. Clinical and epidemiological description of aortic dissection in Turner’s syndrome. Cardiol Young. 2006;16:430–6.

    PubMed  Google Scholar 

  89. 89.

    Chasan-Taber L, Willett WC, Manson JE, Spiegelman D, Hunter DJ, Curhan G, et al. Prospective study of oral contraceptives and hypertension among women in the United States. Circulation. 1996;94:483–9.

    CAS  PubMed  Google Scholar 

  90. 90.

    Dong W, Colhoun HM, Poulter NR. Blood pressure in women using oral contraceptives: results from the health survey for England 1994. J Hypertens. 1997;15:1063–8.

    CAS  PubMed  Google Scholar 

  91. 91.

    Hussain SF. Progestogen-only pills and high blood pressure: is there an association? A literature review. Contraception. 2004;69:89–97.

    CAS  PubMed  Google Scholar 

  92. 92.

    Liu H, Yao J, Wang W, Zhang D. Association between duration of oral contraceptive use and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich). 2017;19:1032–41.

    CAS  Google Scholar 

  93. 93.

    Lubianca JN, Moreira LB, Gus M, Fuchs FD. Stopping oral contraceptives: an effective blood pressure-lowering intervention in women with hypertension. J Hum Hypertens. 2005;19:451–5.

    CAS  PubMed  Google Scholar 

  94. 94.

    ACOG. Practice Bulletin No. 206: use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol. 2019;133(2):e128–50.

    Google Scholar 

  95. 95.

    World Health Organization. Medical eligibility criteria for contraceptive use. Third edition, 2004. http://apps.who.int/iris/bitstream/10665/42907/1/9241562668.pdf (date accessed June 28th 2018).

  96. 96.

    Coylewright M, Reckelhoff JF, Ouyang P. Menopause and hypertension: an age-old debate. Hypertension. 2008;51:952–859.

    CAS  PubMed  Google Scholar 

  97. 97.

    Yanes LL, Reckelhoff JF. Postmenopausal hypertension. Am J Hypertens. 2011;24:740–9.

    PubMed  Google Scholar 

  98. 98.

    Taddei S, Virdis A, Ghiadoni L, Mattei P, Sudano I, Bernini G, et al. Menopause is associated with endothelial dysfunction in women. Hypertension. 1996;28:576–82.

    CAS  PubMed  Google Scholar 

  99. 99.

    Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45:522–5.

    CAS  PubMed  Google Scholar 

  100. 100.

    Turnbull F, Woodward M, Neal B, Barzi F, Ninomiya T, Chalmers J, et al. Do men and women respond differently to blood pressure-lowering treatment? Results of prospectively designed overviews of randomized trials. Eur Heart J. 2008;29:2669–80.

    PubMed  Google Scholar 

  101. 101.

    Moretti C, Lanzolla G, Moretti M, Gnessi L, Carmina E. Androgens and hypertension in men and women: a unifying view. Curr Hypertens Rep. 2017;19(5):44.

    PubMed  Google Scholar 

  102. 102.

    Anderson UD, Gram M, Ranstam J, Thilaganathan B, Kerström B, Hansson SR. Fetal hemoglobin, α1-microglobulin and hemopexin are potential predictive first trimester biomarkers for preeclampsia. Pregnancy Hypertens. 2016;6(2):103–9.

    PubMed  Google Scholar 

  103. 103.

    Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 2018;172(4):368–77.

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J. 2018;39(25):2390–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    García D, Massucci FA, Mosca A, Ràfols I, Rodríguez A, Vassena R. Mapping research in assisted reproduction worldwide. Reprod Biomed Online. 2019;40(1):71–81.

Download references

Funding

Open access funding provided by Lund University. This review was supported by a grant from the Research Council of Sweden (PMN), and the ReproUnion collaborative study (AG), co-financed by the European Union, Intereg V Öresund-Kattegat-Skagerrak (NYPS 20200407).

Author information

Affiliations

Authors

Contributions

All authors contributed to the review study conception and design. The first draft of the manuscript was written by Peter M. Nilsson, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peter M. Nilsson.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilsson, P.M., Viigimaa, M., Giwercman, A. et al. Hypertension and Reproduction. Curr Hypertens Rep 22, 29 (2020). https://doi.org/10.1007/s11906-020-01036-2

Download citation

Keywords

  • Assisted reproductive technologies
  • Erectile dysfunction
  • Hypertensive disorders in pregnancy
  • Low birth weight
  • Male hypogonadism
  • Oral contraception