Advertisement

The Renin-Angiotensin System in the Central Nervous System and Its Role in Blood Pressure Regulation

  • Pablo Nakagawa
  • Javier Gomez
  • Justin L. Grobe
  • Curt D. SigmundEmail author
Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Inflammation and Cardiovascular Diseases

Abstract

Purpose of the Review

The main goal of this article is to discuss how the development of state-of-the-art technology has made it possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the neurophysiological and molecular perspective.

Recent Findings

The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization techniques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that have shown promising results in clinical studies and trials.

Summary

Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years, efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.

Keywords

Renin Prorenin receptor Angiotensin receptor Biased agonist Blood pressure Neurophysiology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.  https://doi.org/10.1161/cir.0000000000000152.
  2. 2.
    Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–28.  https://doi.org/10.1002/cphy.c130040.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension. 2007;50(6):1093–8.  https://doi.org/10.1161/hypertensionaha.106.084848.CrossRefPubMedGoogle Scholar
  4. 4.
    Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–11.  https://doi.org/10.1161/circresaha.113.301077.CrossRefPubMedGoogle Scholar
  5. 5.
    Leon SJ, Tangri N. The use of renin-angiotensin system inhibitors in patients with chronic kidney disease. Can J Cardiol. 2019;35(9):1220–7.  https://doi.org/10.1016/j.cjca.2019.06.029.CrossRefPubMedGoogle Scholar
  6. 6.
    Rossignol P, Hernandez AF, Solomon SD, Zannad F. Heart failure drug treatment. Lancet. 2019;393(10175):1034–44.  https://doi.org/10.1016/s0140-6736(18)31808-7.CrossRefPubMedGoogle Scholar
  7. 7.
    Lewis EJ, Lewis JB. Treatment of diabetic nephropathy with angiotensin II receptor antagonist. Clin Exp Nephrol. 2003;7(1):1–8.  https://doi.org/10.1007/s101570300000.CrossRefPubMedGoogle Scholar
  8. 8.
    Hofmann Bowman MA, Eagle KA, Milewicz DM. Update on clinical trials of losartan with and without beta-blockers to block aneurysm growth in patients with Marfan syndrome: a review. JAMA Cardiol. 2019;4(7):702–7.  https://doi.org/10.1001/jamacardio.2019.1176.CrossRefPubMedGoogle Scholar
  9. 9.
    Kitamura N, Matsukawa Y, Takei M, Sawada S. Antiproteinuric effect of angiotensin-converting enzyme inhibitors and an angiotensin II receptor blocker in patients with lupus nephritis. J Int Med Res. 2009;37(3):892–8.  https://doi.org/10.1177/147323000903700335.CrossRefPubMedGoogle Scholar
  10. 10.
    Chang Y, Wei W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin Exp Immunol. 2015;179(2):137–45.  https://doi.org/10.1111/cei.12467.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wilkins LH, Dustan HP, Walker JF, Oparil S. Enalapril in low-renin essential hypertension. Clin Pharmacol Ther. 1983;34(3):297–302.  https://doi.org/10.1038/clpt.1983.171.CrossRefPubMedGoogle Scholar
  12. 12.
    Holland OB, von Kuhnert L, Campbell WB, Anderson RJ. Synergistic effect of captopril with hydrochlorothiazide for the treatment of low-renin hypertensive black patients. Hypertension. 1983;5(2):235–9.  https://doi.org/10.1161/01.hyp.5.2.235.CrossRefPubMedGoogle Scholar
  13. 13.
    Bickerton RK, Buckley JP. Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med. 1961;106(4):834–6.  https://doi.org/10.3181/00379727-106-26492.CrossRefGoogle Scholar
  14. 14.
    Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D, et al. The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 2010;12(5):431–42.  https://doi.org/10.1016/j.cmet.2010.09.011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Avrith DB, Fitzsimons JT. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol. 1980;301:349–64.  https://doi.org/10.1113/jphysiol.1980.sp013210.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    SEVERS WB, DANIELS AE, SMOOKLER HH, KINNARD WJ, JP BUCKLEY. Interrelationship between angiotensin II and the sympathetic nervous system. J Pharmacol Exp Ther. 1966;153(3):530–7.PubMedGoogle Scholar
  17. 17.
    Unger T, Becker H, Petty M, Demmert G, Schneider B, Ganten D, et al. Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats. Implications for cardiovascular adaptation to behavioral responses. Circ Res. 1985;56(4):563–75.  https://doi.org/10.1161/01.res.56.4.563.CrossRefPubMedGoogle Scholar
  18. 18.
    Hilzendeger AM, Cassell MD, Davis DR, Stauss HM, Mark AL, Grobe JL, et al. Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension. Hypertension. 2013;61(3):716–22.  https://doi.org/10.1161/hypertensionaha.111.00356.CrossRefPubMedGoogle Scholar
  19. 19.
    Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, et al. Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R770–r80.  https://doi.org/10.1152/ajpregu.00435.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu J, Sriramula S, Xia H, Moreno-Walton L, Culicchia F, Domenig O, et al. Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ Res. 2017;121(1):43–55.  https://doi.org/10.1161/circresaha.116.310509.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension. 2011;57(6):1076–80.  https://doi.org/10.1161/hypertensionaha.111.170308.CrossRefPubMedGoogle Scholar
  22. 22.
    Oliva RV, Bakris GL. Sympathetic activation in resistant hypertension: theory and therapy. Semin Nephrol. 2014;34(5):550–9.  https://doi.org/10.1016/j.semnephrol.2014.08.009.CrossRefPubMedGoogle Scholar
  23. 23.
    Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation. 2000;101(14):1634–7.  https://doi.org/10.1161/01.cir.101.14.1634.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang G, Gray TS, Sigmund CD, Cassell MD. The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res. 1999;817(1–2):123–31.  https://doi.org/10.1016/s0006-8993(98)01236-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Milsted A, Barna BP, Ransohoff RM, Brosnihan KB, Ferrario CM. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA. Proc Natl Acad Sci U S A. 1990;87(15):5720–3.  https://doi.org/10.1073/pnas.87.15.5720.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.  https://doi.org/10.1126/science.3201232.CrossRefPubMedGoogle Scholar
  27. 27.
    Intebi AD, Flaxman MS, Ganong WF, Deschepper CF. Angiotensinogen production by rat astroglial cells in vitro and in vivo. Neuroscience. 1990;34(3):545–54.  https://doi.org/10.1016/0306-4522(90)90163-x.CrossRefPubMedGoogle Scholar
  28. 28.
    Agassandian K, Grobe JL, Liu X, Agassandian M, Thompson AP, Sigmund CD, et al. Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. Am J Physiol Regul Integr Comp Physiol. 2017;312(6):R973–r81.  https://doi.org/10.1152/ajpregu.00511.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Song K, Allen AM, Paxinos G, Mendelsohn FA. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992;316(4):467–84.  https://doi.org/10.1002/cne.903160407.CrossRefPubMedGoogle Scholar
  30. 30.
    de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Struct Funct. 2016;221(2):891–912.  https://doi.org/10.1007/s00429-014-0943-1.CrossRefPubMedGoogle Scholar
  31. 31.
    • de Kloet AD, Wang L, Pitra S, Hiller H, Smith JA, Tan Y, et al. A unique “angiotensin-sensitive” neuronal population coordinates neuroendocrine, cardiovascular, and behavioral responses to stress. J Neurosci. 2017;37(13):3478–90.  https://doi.org/10.1523/jneurosci.3674-16.2017 Utilizing optogenetics, the authors identified the role of AT1R expressing neurons within the paraventricular nucleus.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991;88(3):921–33.  https://doi.org/10.1172/jci115395.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Araujo RC, Lima MP, Lomez ES, Bader M, Pesquero JB, Sumitani M, et al. Tonin expression in the rat brain and tonin-mediated central production of angiotensin II. Physiol Behav. 2002;76(2):327–33.  https://doi.org/10.1016/s0031-9384(02)00720-5.CrossRefPubMedGoogle Scholar
  34. 34.
    Genest J, Cantin M, Garcia R, Thibault G, Gutkowska J, Schiffrin E, et al. Extrarenal angiotensin-forming enzymes. Clin Exp Hypertens A. 1983;5(7–8):1065–80.  https://doi.org/10.3109/10641968309048842.CrossRefPubMedGoogle Scholar
  35. 35.
    Tonnaer JA, Wiegant VM, De Jong W. Angiotensin generation in the brain and drinking: indications for the involvement of endopeptidase activity distinct from cathepsin D. Brain Res. 1981;223(2):343–53.  https://doi.org/10.1016/0006-8993(81)91147-1.CrossRefPubMedGoogle Scholar
  36. 36.
    Isa K, Garcia-Espinosa MA, Arnold AC, Pirro NT, Tommasi EN, Ganten D, et al. Chronic immunoneutralization of brain angiotensin-(1-12) lowers blood pressure in transgenic (mRen2)27 hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R111–5.  https://doi.org/10.1152/ajpregu.90588.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    van Thiel BS, Goes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, et al. Brain renin-angiotensin system: does it exist? Hypertension. 2017;69(6):1136–44.  https://doi.org/10.1161/hypertensionaha.116.08922.CrossRefPubMedGoogle Scholar
  38. 38.
    Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, et al. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 2007;117(4):1088–95.  https://doi.org/10.1172/jci31242.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CM, et al. Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest. 2017;127(4):1414–24.  https://doi.org/10.1172/jci88641.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI. The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol (1985). 2012;113(12):1929–36.  https://doi.org/10.1152/japplphysiol.00569.2012.CrossRefGoogle Scholar
  41. 41.
    Lee-Kirsch MA, Gaudet F, Cardoso MC, Lindpaintner K. Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing. Circ Res. 1999;84(2):240–6.  https://doi.org/10.1161/01.res.84.2.240.CrossRefPubMedGoogle Scholar
  42. 42.
    Sinn PL, Sigmund CD. Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation. Physiol Genomics. 2000;3(1):25–31.  https://doi.org/10.1152/physiolgenomics.2000.3.1.25.CrossRefPubMedGoogle Scholar
  43. 43.
    Peters J, Wanka H, Peters B, Hoffmann S. A renin transcript lacking exon 1 encodes for a non-secretory intracellular renin that increases aldosterone production in transgenic rats. J Cell Mol Med. 2008;12(4):1229–37.  https://doi.org/10.1111/j.1582-4934.2008.00132.x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Re RN. Role of intracellular angiotensin II. Am J Physiol Heart Circ Physiol. 2018;314(4):H766–h71.  https://doi.org/10.1152/ajpheart.00632.2017.CrossRefPubMedGoogle Scholar
  45. 45.
    Singh VP, Le B, Bhat VB, Baker KM, Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007;293(2):H939–48.  https://doi.org/10.1152/ajpheart.00391.2007.CrossRefPubMedGoogle Scholar
  46. 46.
    Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23:187–93.  https://doi.org/10.1152/physiol.00002.2008.CrossRefGoogle Scholar
  47. 47.
    • Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez ML, Cassell MD, et al. Selective deletion of the brain-specific isoform of renin causes neurogenic hypertension. Hypertension. 2016;68(6):1385–92.  https://doi.org/10.1161/hypertensionaha.116.08242 This study describes how a selective ablation of the alternative intracellular renin isoform leads to paradoxical elevation of angiotensinergic signaling in the brain leading to elevated blood pressure. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217.  https://doi.org/10.1088/0143-0815/10/3/001.CrossRefPubMedGoogle Scholar
  49. 49.
    Lu X, Wang F, Xu C, Soodvilai S, Peng K, Su J, et al. Soluble (pro)renin receptor via beta-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci U S A. 2016;113(13):E1898–906.  https://doi.org/10.1073/pnas.1602397113.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Healy DP, Printz MP. Distribution of immunoreactive angiotensin II, angiotensin I, angiotensinogen and renin in the central nervous system of intact and nephrectomized rats. Hypertension. 1984;6(2 Pt 2):I130–6.  https://doi.org/10.1161/01.hyp.6.2_pt_2.i130.CrossRefPubMedGoogle Scholar
  51. 51.
    Hutchinson JS, Csicsmann J. The distribution of immunoreactive angiotensins I and II extracted from rat brain. Acta Med Acad Sci Hung. 1978;35(3–4):277–85.PubMedGoogle Scholar
  52. 52.
    Phillips MI, Stenstrom B. Angiotensin II in rat brain comigrates with authentic angiotensin II in high pressure liquid chromatography. Circ Res. 1985;56(2):212–9.  https://doi.org/10.1161/01.res.56.2.212.CrossRefPubMedGoogle Scholar
  53. 53.
    Hermann K, McDonald W, Unger T, Lang RE, Ganten D. Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats. J Physiol (Paris). 1984;79(6):471–80.Google Scholar
  54. 54.
    Inagami T, Yokosawa H, Hirose S. Definitive evidence for renin in rat brain by affinity chromatographic separation from protease. Clin Sci Mol Med Suppl. 1978;4:121s–3s.  https://doi.org/10.1042/cs055121s.CrossRefPubMedGoogle Scholar
  55. 55.
    Dzau VJ, Brenner A, Emmett N, Haber E. Identification of renin and renin-like enzymes in rat brain by a renin-specific antibody. Clin Sci (London). 1980;59 Suppl 6:45s–7s.  https://doi.org/10.1042/cs059045s.CrossRefGoogle Scholar
  56. 56.
    Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, Barbeau A, et al. Angiotensin-forming enzyme in brain tissue. Science. 1971;173(3991):64–5.  https://doi.org/10.1126/science.173.3991.64.CrossRefPubMedGoogle Scholar
  57. 57.
    Basso N, Ruiz P, Taquini AC. Angiotensin--forming enzyme active at the physiological Ph in the brain of normal and nephrectomized rats. Clin Exp Hypertens A. 1982;4(6):963–75.  https://doi.org/10.3109/10641968209060765.CrossRefPubMedGoogle Scholar
  58. 58.
    Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension. 2004;43(5):1116–9.  https://doi.org/10.1161/01.Hyp.0000125143.73301.94.CrossRefPubMedGoogle Scholar
  59. 59.
    Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiol Genomics. 2004;16(2):240–6.  https://doi.org/10.1152/physiolgenomics.00131.2003.CrossRefPubMedGoogle Scholar
  60. 60.
    Ren L, Lu X, Danser AHJ. Revisiting the brain renin-angiotensin system-focus on novel therapies. Curr Hypertens Rep. 2019;21(4):28.  https://doi.org/10.1007/s11906-019-0937-8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hirose S, Naruse M, Ohtsuki K, Inagami T. Totally inactive renin zymogen and different forms of active renin in hog brain tissues. J Biol Chem. 1981;256(11):5572–6.PubMedGoogle Scholar
  62. 62.
    Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–27.  https://doi.org/10.1172/jci14276.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    • LAC S, Worker CJ, Li W, Trebak F, Watkins T, AJB G, et al. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol. 2019;316(6):H1389–H405.  https://doi.org/10.1152/ajpheart.00780.2018 Utilizing a novel calcium biosensor, the authors demonstrate that ablation of prorenin receptor in the paraventricular nucleus attenuates angiotensin II-induced calcium signaling in hypertension.CrossRefGoogle Scholar
  64. 64.
    Xu Q, Jensen DD, Peng H, Feng Y. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. Pharmacol Ther. 2016;164:126–34.  https://doi.org/10.1016/j.pharmthera.2016.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bracke A, von Bohlen und Halbach O. Roles and functions of Atp6ap2 in the brain. Neural Regen Res. 2018;13(12):2038–43.  https://doi.org/10.4103/1673-5374.241428.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Trepiccione F, Gerber SD, Grahammer F, López-Cayuqueo KI, Baudrie V, Păunescu TG, et al. Renal Atp6ap2/(pro)renin receptor is required for normal vacuolar H+-ATPase function but not for the renin-angiotensin system. J Am Soc Nephrol. 2016;27(11):3320–30.  https://doi.org/10.1681/asn.2015080915.CrossRefGoogle Scholar
  67. 67.
    Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, Wen G, et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet. 2005;14(8):1019–27.  https://doi.org/10.1093/hmg/ddi094.CrossRefPubMedGoogle Scholar
  68. 68.
    Ichihara A. (pro)renin receptor and autophagy in podocytes. Autophagy. 2012;8(2):271–2.  https://doi.org/10.4161/auto.8.2.18846.CrossRefPubMedGoogle Scholar
  69. 69.
    Li C, Siragy HM. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309(3):E302–10.  https://doi.org/10.1152/ajpendo.00603.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, Van Hoek AN, et al. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Renal Physiol. 2015;309(1):F48–56.  https://doi.org/10.1152/ajprenal.00126.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Itaya Y, Suzuki H, Matsukawa S, Kondo K, Saruta T. Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am J Phys. 1986;251(2 Pt 2):H261–8.  https://doi.org/10.1152/ajpheart.1986.251.2.H261.CrossRefGoogle Scholar
  72. 72.
    Kubo T, Yamaguchi H, Tsujimura M, Hagiwara Y, Fukumori R. An angiotensin system in the anterior hypothalamic area anterior is involved in the maintenance of hypertension in spontaneously hypertensive rats. Brain Res Bull. 2000;52(4):291–6.  https://doi.org/10.1016/s0361-9230(00)00266-5.CrossRefPubMedGoogle Scholar
  73. 73.
    Park CG, Leenen FH. Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. J Korean Med Sci. 2001;16(5):553–7.  https://doi.org/10.3346/jkms.2001.16.5.553.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Basting T, Lazartigues E. DOCA-salt hypertension: an update. Curr Hypertens Rep. 2017;19(4):32–8.  https://doi.org/10.1007/s11906-017-0731-4.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, et al. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension. 2014;63(2):316–23.  https://doi.org/10.1161/hypertensionaha.113.02041.CrossRefPubMedGoogle Scholar
  76. 76.
    Trebak F, Li W, Feng Y. Neuronal (pro)renin receptor regulates deoxycorticosterone-induced sodium intake. Physiol Genomics. 2018;50(10):904–12.  https://doi.org/10.1152/physiolgenomics.00065.2018.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Basting T, Xu J, Mukerjee S, Epling J, Fuchs R, Sriramula S, et al. Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. J Physiol. 2018;596(24):6235–48.  https://doi.org/10.1113/jp276229.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, et al. Direct pro-inflammatory effects of prorenin on microglia. PLoS One. 2014;9(10):e92937.  https://doi.org/10.1371/journal.pone.0092937.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53(6):1077–82.  https://doi.org/10.1161/hypertensionaha.108.127258.CrossRefPubMedGoogle Scholar
  80. 80.
    Nakagawa T, Suzuki-Nakagawa C, Watanabe A, Asami E, Matsumoto M, Nakano M, et al. Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem. 2017;161(4):369–79.  https://doi.org/10.1093/jb/mvw080.CrossRefPubMedGoogle Scholar
  81. 81.
    Nishijima T, Tajima K, Takahashi K, Sakurai S. Elevated plasma levels of soluble (pro)renin receptor in patients with obstructive sleep apnea syndrome: association with polysomnographic parameters. Peptides. 2014;56:14–21.  https://doi.org/10.1016/j.peptides.2014.03.008.CrossRefPubMedGoogle Scholar
  82. 82.
    Hamada K, Taniguchi Y, Shimamura Y, Inoue K, Ogata K, Ishihara M, et al. Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin Exp Nephrol. 2013;17(6):848–56.  https://doi.org/10.1007/s10157-013-0803-y.CrossRefPubMedGoogle Scholar
  83. 83.
    Watanabe N, Bokuda K, Fujiwara T, Suzuki T, Mito A, Morimoto S, et al. Soluble (pro)renin receptor and blood pressure during pregnancy: a prospective cohort study. Hypertension. 2012;60(5):1250–6.  https://doi.org/10.1161/hypertensionaha.112.197418.CrossRefPubMedGoogle Scholar
  84. 84.
    Morimoto S, Ando T, Niiyama M, Seki Y, Yoshida N, Watanabe D, et al. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens Res. 2014;37(7):642–8.  https://doi.org/10.1038/hr.2014.46.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    • Gatineau E, Gong MC, Yiannikouris F. Soluble prorenin receptor increases blood pressure in high fat-fed male mice. Hypertension. 2019;74(4):1014–20.  https://doi.org/10.1161/hypertensionaha.119.12906 Provides key evidence that soluble prorenin receptor induces blood pressure elevation possibly through a neurogenic mechanism in diseases associated with obesity.CrossRefPubMedGoogle Scholar
  86. 86.
    Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F. Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol. 2019;316(3):H506–h15.  https://doi.org/10.1152/ajpheart.00473.2018.CrossRefPubMedGoogle Scholar
  87. 87.
    Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD. Protective axis of the renin-angiotensin system in the brain. Clin Sci (London). 2014;127(5):295–306.  https://doi.org/10.1042/cs20130450.CrossRefGoogle Scholar
  88. 88.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.  https://doi.org/10.1073/pnas.1432869100.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Leonhardt J, Villela DC, Teichmann A, Munter LM, Mayer MC, Mardahl M, et al. Evidence for heterodimerization and functional interaction of the angiotensin type 2 receptor and the receptor MAS. Hypertension. 2017;69(6):1128–35.  https://doi.org/10.1161/hypertensionaha.116.08814.CrossRefPubMedGoogle Scholar
  90. 90.
    Teixeira LB, Parreiras ESLT, Bruder-Nascimento T, Duarte DA, Simoes SC, Costa RM, et al. Ang-(1-7) is an endogenous beta-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci Rep. 2017;7(1):11903.  https://doi.org/10.1038/s41598-017-12074-3.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216(2):R1–r17.  https://doi.org/10.1530/joe-12-0341.CrossRefPubMedGoogle Scholar
  92. 92.
    Xia H, Feng Y, Obr TD, Hickman PJ, Lazartigues E. Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension. 2009;53(2):210–6.  https://doi.org/10.1161/hypertensionaha.108.123844.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280(34):30113–9.  https://doi.org/10.1074/jbc.M505111200.CrossRefPubMedGoogle Scholar
  94. 94.
    Xia H, Sriramula S, Chhabra KH, Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res. 2013;113(9):1087–96.  https://doi.org/10.1161/circresaha.113.301811.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yamazato M, Yamazato Y, Sun C, Diez-Freire C, Raizada MK. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension. 2007;49(4):926–31.  https://doi.org/10.1161/01.Hyp.0000259942.38108.20.CrossRefPubMedGoogle Scholar
  96. 96.
    • Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension. 2019;74(5):1181–91.  https://doi.org/10.1161/hypertensionaha.119.13133 Utilizing novel molecular tools the author provide new insights of how the protective arm of the brain RAS is regulated. This new article demonstrates the opposing contributions of ACE2 and ADAM17 in hypothalamic pre-sympathetic neurons for the development of hypertension.CrossRefPubMedGoogle Scholar
  97. 97.
    Xue B, Yu Y, Wei SG, Beltz TG, Guo F, Felder RB, et al. Stress-induced sensitization of angiotensin II hypertension is reversed by blockade of angiotensin-converting enzyme or tumor necrosis factor-alpha. Am J Hypertens. 2019;32(9):909–17.  https://doi.org/10.1093/ajh/hpz075.CrossRefPubMedGoogle Scholar
  98. 98.
    Carvalho-Galvao A, Guimaraes DD, De Brito Alves JL, Braga VA. Central inhibition of tumor necrosis factor alpha reduces hypertension by attenuating oxidative stress in the rostral ventrolateral medulla in renovascular hypertensive rats. Front Physiol. 2019;10:491.  https://doi.org/10.3389/fphys.2019.00491.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Han C, Wu W, Ale A, Kim MS, Cai D. Central leptin and tumor necrosis factor-alpha (TNFalpha) in diurnal control of blood pressure and hypertension. J Biol Chem. 2016;291(29):15131–42.  https://doi.org/10.1074/jbc.M116.730408.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mulatero P, Verhovez A, Morello F, Veglio F. Diagnosis and treatment of low-renin hypertension. Clin Endocrinol. 2007;67(3):324–34.  https://doi.org/10.1111/j.1365-2265.2007.02898.x.CrossRefGoogle Scholar
  101. 101.
    Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 2011;57(3):600–7.  https://doi.org/10.1161/hypertensionaha.110.165829.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, et al. Aminopeptidase a inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci U S A. 1999;96(23):13415–20.  https://doi.org/10.1073/pnas.96.23.13415.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, et al. Brain renin-angiotensin system blockade by systemically active aminopeptidase a inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci U S A. 2004;101(20):7775–80.  https://doi.org/10.1073/pnas.0402312101.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    • Ferdinand KC, Balavoine F, Besse B, Black HR, Desbrandes S, Dittrich HC, et al. Efficacy and safety of firibastat, a first-in-class brain aminopeptidase A inhibitor, in hypertensive overweight patients of multiple ethnic origins. Circulation. 2019;140(2):138–46.  https://doi.org/10.1161/circulationaha.119.040070 First clinical trial demonstrating the efficacy and safety of aminopeptidase A inhibitors in hypertension associated with obesity.CrossRefPubMedGoogle Scholar
  105. 105.
    Azizi M, Courand PY, Denolle T, Delsart P, Zhygalina V, Amar L, et al. A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens. 2019;37(8):1722–8.  https://doi.org/10.1097/hjh.0000000000002092.CrossRefPubMedGoogle Scholar
  106. 106.
    Keck M, De Almeida H, Compere D, Inguimbert N, Flahault A, Balavoine F, et al. NI956/QGC006, a potent orally active, brain-penetrating aminopeptidase a inhibitor for treating hypertension. Hypertension. 2019;73(6):1300–7.  https://doi.org/10.1161/hypertensionaha.118.12499.CrossRefPubMedGoogle Scholar
  107. 107.
    Shan BS, Mogi M, Iwanami J, Bai HY, Kan-No H, Higaki A, et al. Attenuation of stroke damage by angiotensin II type 2 receptor stimulation via peroxisome proliferator-activated receptor-gamma activation. Hypertens Res. 2018;41(10):839–48.  https://doi.org/10.1038/s41440-018-0082-9.CrossRefPubMedGoogle Scholar
  108. 108.
    Bennion DM, Jones CH, Dang AN, Isenberg J, Graham JT, Lindblad L, et al. Protective effects of the angiotensin II AT2 receptor agonist compound 21 in ischemic stroke: a nose-to-brain delivery approach. Clin Sci (Lond). 2018;132(5):581–93.  https://doi.org/10.1042/cs20180100.CrossRefGoogle Scholar
  109. 109.
    Panahpour H, Terpolilli NA, Schaffert D, Culmsee C, Plesnila N. Central application of Aliskiren, a renin inhibitor, improves outcome after experimental stroke independent of its blood pressure lowering effect. Front Neurol. 2019;10:942.  https://doi.org/10.3389/fneur.2019.00942.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is increased in Alzheimer’s disease in association with amyloid-beta and tau pathology. J Alzheimers Dis. 2017;58(1):203–14.  https://doi.org/10.3233/jad-161265.CrossRefPubMedGoogle Scholar
  111. 111.
    Trigiani LJ, Royea J, Lacalle-Aurioles M, Tong XK, Hamel E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension. 2018;72(5):1217–26.  https://doi.org/10.1161/hypertensionaha.118.11775.CrossRefPubMedGoogle Scholar
  112. 112.
    Elkahloun AG, Hafko R, Saavedra JM. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimers Res Ther. 2016;8:5.  https://doi.org/10.1186/s13195-015-0167-5.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ho JK, Nation DA. Memory is preserved in older adults taking AT1 receptor blockers. Alzheimers Res Ther. 2017;9(1):33.  https://doi.org/10.1186/s13195-017-0255-9.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ho JK, Nation DA. Cognitive benefits of angiotensin IV and angiotensin-(1-7): a systematic review of experimental studies. Neurosci Biobehav Rev. 2018;92:209–25.  https://doi.org/10.1016/j.neubiorev.2018.05.005.CrossRefPubMedGoogle Scholar
  115. 115.
    Cooper HA, Scalia R, Rizzo V, Eguchi S. Angiotensin II- and Alzheimer-type cardiovascular aging. Circ Res. 2018;123(6):651–3.  https://doi.org/10.1161/circresaha.118.313477.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Carvalho-Galvao A, Ogunlade B, Xu J, Silva-Alves CRA, Mendes-Junior LG, Guimaraes DD, et al. Central administration of TRV027 improves baroreflex sensitivity and vascular reactivity in spontaneously hypertensive rats. Clin Sci (Lond). 2018;132(14):1513–27.  https://doi.org/10.1042/cs20180222.CrossRefGoogle Scholar
  117. 117.
    Torika N, Asraf K, Cohen H, Fleisher-Berkovich S. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer’s disease mice. Brain Behav Immun. 2017;64:80–90.  https://doi.org/10.1016/j.bbi.2017.04.001.CrossRefPubMedGoogle Scholar
  118. 118.
    Gonzalez AD, Wang G, Waters EM, Gonzales KL, Speth RC, Van Kempen TA, et al. Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience. 2012;226:489–509.  https://doi.org/10.1016/j.neuroscience.2012.08.039.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell. 2004;6(5):719–28.  https://doi.org/10.1016/s1534-5807(04)00134-0.CrossRefPubMedGoogle Scholar
  120. 120.
    • Nation HL, Nicoleau M, Kinsman BJ, Browning KN, Stocker SD. DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. J Neurophysiol. 2016;115(6):3123–9.  https://doi.org/10.1152/jn.00149.2016 Demonstrated that DREADD-mediated stimulation of neurons within the subfornical organ leads to prominent dipsogenic responses and salt appetite.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    • Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics. 2017;49(12):722–32.  https://doi.org/10.1152/physiolgenomics.00087.2017 In silico re-analysis of hypothalamic single-cell RNA sequencing datasets reveals that AT 1R is expressed in a specific subcluster of neurons expressing both Agouti-related peptide (AgRP) and leptin receptors.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Pablo Nakagawa
    • 1
  • Javier Gomez
    • 1
  • Justin L. Grobe
    • 1
  • Curt D. Sigmund
    • 1
    Email author
  1. 1.Department of Physiology, Cardiovascular CenterMedical College of WisconsinMilwaukeeUSA

Personalised recommendations