Advertisement

Arterial Stiffness and Coronary Ischemia: New Aspects and Paradigms

  • Alexandre ValléeEmail author
  • Alexandre Cinaud
  • Athanase Protogerou
  • Yi Zhang
  • Jirar Topouchian
  • Michel E. Safar
  • Jacques Blacher
Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
  • 44 Downloads
Part of the following topical collections:
  1. Topical Collection on Blood Pressure Monitoring and Management

Abstract

Purpose of Review

Aortic stiffness (AS) is widely associated with hypertension and considered as a major predictor of coronary heart disease (CHD). AS is measured using carotid–femoral pulse wave velocity (PWV), particularly when this parameter is associated with an index involving age, gender, heart rate, and mean blood pressure. The present review focuses on the interest of measurement of PWV and the calculation of individual PWV index for the prediction of CHD, in addition with the use of new statistical nonlinear models enabling results with very high levels of accuracy.

Recent Findings

PWV index may so constitute a substantial marker of large arteries prediction and damage in CHD and may be also used in cerebrovascular and renal circulations models. PWV index determinations are particularly relevant to consider in angiographic CHD decisions and in the presence of vulnerable plaques with high cardiovascular risk. Due to the variability in symptoms and clinical characteristics of patients, together with some imperfections in results, there is no very simple adequate diagnosis approach enabling to improve the so defined CHD prediction in usual clinical practice.

Summary

In recent works in relation to “artificial intelligence” and involving “decision tree” models and “artificial neural networks,” it has been possible to determine consistent pathways introducing predictive medicine and enabling to obtain efficient algorithm classification models of coronary prediction.

Keywords

Coronary heart disease Artificial intelligence Data mining Pulse wave velocity Aortic stiffness Personalized medicine 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Safar ME, Asmar R, Benetos A, Blacher J, Boutouyrie P, Lacolley P, et al. Interaction between hypertension and arterial stiffness. Hypertension. 2018;72:796–805 This review highlighted the importance of arterial stiffness in hypertension and cardiovascular diseases. PubMedCrossRefGoogle Scholar
  2. 2.
    Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Hansen JF. Prevalence and prognostic significance of daily-life silent myocardial ischaemia in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J. 2005;26:1402–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.PubMedCrossRefGoogle Scholar
  6. 6.
    Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33:1111–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, et al. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002;15:1101–8.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Rourke M. Vascular impedance: the relationship between pressure and flow. In: Arterial function in health and disease. London: Livingstone and Churchill; 1982.Google Scholar
  10. 10.
    Folkow B. Physiological aspect of primary hypertension. Physiol Rev. 1982; 62(2):347–504.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Noordergraaf A. Circulatory system dynamics. New-York: Academic Press; 1978. p. 137–9.Google Scholar
  12. 12.
    Milnor W. Hemodynamics. Baltimore: Williams and Wilkins; 1983. p. 93–5.Google Scholar
  13. 13.
    Simon AC, Laurent S, Levenson JA, Bouthier JE, Safar ME. Estimation of forearm arterial compliance in normal and hypertensive men from simultaneous pressure and flow measurements in the brachial artery, using a pulsed Doppler device and a first-order arterial model during diastole. Cardiovasc Res. 1983;17:331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Safar ME, Simon AC, Levenson JA. Structural changes of large arteries in sustained essential hypertension. Hypertension. 1984;6:III117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Merillon JP, Neukirch F, Motte G, Aumont MC, Curien ND, Prasquier R, et al. The left ventricular end-systolic pressure-volume ratio. Studies during changes in load and inotropism in the human. Eur Heart J. 1981;2:41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Safar ME, Toto-Moukouo JJ, Bouthier JA, Asmar RE, Levenson JA, Simon AC, et al. Arterial dynamics, cardiac hypertrophy, and antihypertensive treatment. Circulation. 1987;75:I156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Isnard RN, Pannier BM, Laurent S, London GM, Diebold B, Safar ME. Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: a noninvasive study. J Am Coll Cardiol. 1989;13:399–405.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Asmar RG, London GM, O’Rourke ME, Safar ME. REASON project coordinators and investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38:922–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bramwell J, Hill A. The velocity of the pulse wave in man. Proc R Soc B. 1922:298.  https://doi.org/10.1098/rsp/1922.0022.
  21. 21.
    Bouthier JD, De Luca N, Safar ME, Simon AC. Cardiac hypertrophy and arterial distensibility in essential hypertension. Am Heart J. 1985;109:1345–52.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gribbin B, Pickering TG, Sleight P. Arterial distensibility in normal and hypertensive man. Clin Sci Lond Engl 1979. 1979;56:413–7.Google Scholar
  24. 24.
    Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: “establishing normal and reference values.”. Eur Heart J. 2010;31:2338–50.CrossRefGoogle Scholar
  25. 25.
    Nichols W, O’Rourke M. McDonald’s blood flow in arteries theoretical, experimental and clinical principles. 4th ed. London: Edward Arnold; 2006.Google Scholar
  26. 26.
    Blacher J, Safar ME, Guerin AP, Pannier B, Marchais SJ, London GM. Aortic pulse wave velocity index and mortality in end-stage renal disease. Kidney Int. 2003;63:1852–60.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    • Vallée A, Yannoutsos A, Temmar M, Dreyfuss Tubiana C, Spinu I, Zhang Y, et al. Determinants of the aortic pulse wave velocity index in hypertensive and diabetic patients: predictive and therapeutic implications. J Hypertens. 2018;36:2324–32 This article determined the calculation of PWV index and its determinants. PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Thijssen DHJ, Carter SE, Green DJ. Arterial structure and function in vascular ageing: are you as old as your arteries? J Physiol. 2016;594:2275–84.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Stefanadis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H. Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol. 1987;59:1300–4.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yannoutsos A, Ahouah M, Dreyfuss Tubiana C, Topouchian J, Safar ME, Blacher J. Aortic stiffness improves the prediction of both diagnosis and severity of coronary artery disease. Hypertens Res Off J Jpn Soc Hypertens. 2018;41:118–25.CrossRefGoogle Scholar
  31. 31.
    Duman OO, Goldeli O, Gursul E, Baris N, Ozpelit E, Simsek MA. The value of aortic pulse wave velocity in predicting coronary artery disease diagnosis and severity. Acta Cardiol. 2015;70:315–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Doumas M, Papademetriou V, Athyros V, Karagiannis A. Arterial stiffness and emerging biomarkers: still a long journey to go. Angiology. 2015;66:901–3.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15:426–44.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? Framingham Heart Stud Circ. 2001;103:1245–9.CrossRefGoogle Scholar
  35. 35.
    Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Leung MCH, Meredith IT, Cameron JD. Aortic stiffness affects the coronary blood flow response to percutaneous coronary intervention. Am J Physiol Heart Circ Physiol. 2006;290:H624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Saito M, Okayama H, Nishimura K, Ogimoto A, Ohtsuka T, Inoue K, et al. Possible link between large artery stiffness and coronary flow velocity reserve. Heart Br Card Soc. 2008;94:e20.CrossRefGoogle Scholar
  38. 38.
    Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.PubMedCrossRefGoogle Scholar
  39. 39.
    •• Vallée A, Petruescu L, Kretz S, Safar ME, Blacher J. Added value of aortic pulse wave velocity index in a predictive diagnosis decision tree of coronary heart disease. Am J Hypertens. 2019;32:375–83 New statistical method using artificial intelligence in aortic stiffness and coronary heart disease. PubMedCrossRefGoogle Scholar
  40. 40.
    Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation. 2009;119:e561–87.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguadé-Bruix S, et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015;8.Google Scholar
  43. 43.
    Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ. Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005;18:388–96.PubMedPubMedCentralGoogle Scholar
  44. 44.
    •• Vallée A, Zhang Y, Protogerou A, Safar ME, Blacher J. Added value of aortic pulse wave velocity index for the detection of coronary heart disease by elective coronary angiography. Blood Press. 2019;28(6):375–384. New statistical method using decision tree in coronary heart disease determination. PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jankowski P, Bilo G, Kawecka-Jaszcz K. The pulsatile component of blood pressure: its role in the pathogenesis of atherosclerosis. Blood Press. 2007;16:238–45.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Waddell TK, Dart AM, Medley TL, Cameron JD, Kingwell BA. Carotid pressure is a better predictor of coronary artery disease severity than brachial pressure. Hypertension. 2001;38:927–31.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Styczkiewicz M, et al. Ascending aortic, but not brachial blood pressure-derived indices are related to coronary atherosclerosis. Atherosclerosis. 2004;176:151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108:1664–72.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lovett JK, Howard SC, Rothwell PM. Pulse pressure is independently associated with carotid plaque ulceration. J Hypertens. 2003;21:1669–76.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Protogerou AD, Vlachopoulos C, Thomas F, Zhang Y, Pannier B, Blacher J, et al. Longitudinal changes in mean and pulse pressure, and all-cause mortality: data from 71,629 untreated normotensive individuals. Am J Hypertens. 2017;30:1093–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51:848–55.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Myers J, de Souza CR, Borghi-Silva A, Guazzi M, Chase P, Bensimhon D, et al. A neural network approach to predicting outcomes in heart failure using cardiopulmonary exercise testing. Int J Cardiol. 2014;171:265–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zou J, Han Y, So S-S. Overview of artificial neural networks. Methods Mol Biol Clifton NJ. 2008;458:15–23.Google Scholar
  59. 59.
    Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26:195–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol. 2007;2:217–26.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Amigó JM, Small M. Mathematical methods in medicine: neuroscience, cardiology and pathology. Philos Transact A Math Phys Eng Sci. 2017;375(2096).  https://doi.org/10.1098/rsta.2017.0016.CrossRefGoogle Scholar
  62. 62.
    Burden F, Winkler D. Bayesian regularization of neural networks. Methods Mol Biol Clifton NJ. 2008;458:25–44.Google Scholar
  63. 63.
    Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49:1225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Berry M, Linoff G. Data mining techniques: for marketing, sales and customer support. Third Edition; Wiley Publishing Inc., Indianapolis, US; 1997.Google Scholar
  65. 65.
    Soni J, Ansari D, Sharma D, Soni S. Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int J Comput Appl. 2011;17:43–8.Google Scholar
  66. 66.
    Tayefi M, Esmaeili H, Saberi Karimian M, Amirabadi Zadeh A, Ebrahimi M, Safarian M, et al. The application of a decision tree to establish the parameters associated with hypertension. Comput Methods Prog Biomed. 2017;139:83–91.CrossRefGoogle Scholar
  67. 67.
    Ramezankhani A, Pournik O, Shahrabi J, Khalili D, Azizi F, Hadaegh F. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran lipid and glucose study. Diabetes Res Clin Pract. 2014;105:391–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    •• Vallée A, Cinaud A, Blachier V, Lelong H, Safar ME, Blacher J. Coronary heart disease diagnosis by artificial neural networks including aortic pulse wave velocity index and clinical parameters. J Hypertens. 2019;37:1682–8 New statistical method using artificial intelligence by neural networks for coronary heart disease prediction. PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Obenshain MK. Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol. 2004;25:690–5.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Allison JS, Heo J, Iskandrian AE. Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease. Am J Cardiol. 2005;95:178–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Colak MC, Colak C, Kocatürk H, Sağiroğlu S, Barutçu I. Predicting coronary artery disease using different artificial neural network models. Anadolu Kardiyol Derg AKD Anatol J Cardiol. 2008;8:249–54.Google Scholar
  72. 72.
    Papaloukas C, Fotiadis DI, Likas A, Michalis LK. An ischemia detection method based on artificial neural networks. Artif Intell Med. 2002;24:167–78.PubMedCrossRefGoogle Scholar
  73. 73.
    Scott JA, Aziz K, Yasuda T, Gewirtz H. Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks. Coron Artery Dis. 2004;15:427–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Atkov OY, Gorokhova SG, Sboev AG, Generozov EV, Muraseyeva EV, Moroshkina SY, et al. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol. 2012;59:190–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Naidu MUR, Reddy BM, Yashmaina S, Patnaik AN, Rani PU. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study. Biomed Eng Online. 2005;4:49.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Alexandre Vallée
    • 1
    Email author
  • Alexandre Cinaud
    • 1
  • Athanase Protogerou
    • 2
  • Yi Zhang
    • 3
  • Jirar Topouchian
    • 1
  • Michel E. Safar
    • 1
  • Jacques Blacher
    • 1
  1. 1.Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu HospitalParis-Descartes UniversityParisFrance
  2. 2.Cardiovascular Prevention and Research Unit, Department of PathophysiologyNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of Cardiology, Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations