Advertisement

Epicardial Adipose Tissue and Cardiovascular Disease

  • Thierry H. Le JemtelEmail author
  • Rohan Samson
  • Karnika Ayinapudi
  • Twinkle Singh
  • Suzanne Oparil
Hypertension and Obesity (E Reisin, Section Editor)
  • 86 Downloads
Part of the following topical collections:
  1. Topical Collection on Hypertension and Obesity

Abstract

Purpose of Review

Epicardial adipose tissue has been associated with the development/progression of cardiovascular disease. We appraise the strength of the association between epicardial adipose tissue and development/progression of cardiovascular diseases like coronary artery disease, atrial fibrillation, and heart failure with preserved ejection fraction.

Recent Findings

Cross-sectional clinical and translational correlative studies have established an association between epicardial adipose tissue and progression of coronary artery disease. Recent studies question this association and underline the need for longitudinal studies. Epicardial adipose tissue also plays a definite role in the pathobiology of atrial fibrillation and its recurrence after ablation. In contrast to an early paradigm, epicardial adipose tissue does not appear to play a key role in the pathogenesis of heart failure with preserved ejection fraction in obese patients.

Summary

The association of epicardial adipose tissue with atrial fibrillation is robust. In contrast, the association of epicardial adipose tissue with coronary artery disease and heart failure with preserved ejection fraction is tenuous. Additional research, including longitudinal studies, is needed to confirm or refute these proposed associations.

Keywords

Epicardial adipose tissue Coronary artery disease Atrial fibrillation Heart failure with preserved ejection fraction 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53(4):577–84.  https://doi.org/10.1161/HYPERTENSIONAHA.108.110320.CrossRefPubMedGoogle Scholar
  2. 2.
    Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring). 2013;21(9):E439–47.  https://doi.org/10.1002/oby.20135.
  3. 3.
    Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62(10):921–5.  https://doi.org/10.1016/j.jacc.2013.06.027.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.  https://doi.org/10.1152/physrev.00033.2011.CrossRefPubMedGoogle Scholar
  5. 5.
    Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–17.  https://doi.org/10.1016/j.ahj.2007.03.019.CrossRefPubMedGoogle Scholar
  6. 6.
    •• Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–71.  https://doi.org/10.1038/nrendo.2015.58 Comprehensive review of the cardiovascular implications of epicardial adipose tissue by the landmark investigator. CrossRefPubMedGoogle Scholar
  7. 7.
    Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126(10):1301–13.  https://doi.org/10.1161/CIRCULATIONAHA.111.067264.CrossRefPubMedGoogle Scholar
  8. 8.
    •• Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms andclinical associations. J Am Heart Assoc. 2014;3(2):e000582.  https://doi.org/10.1161/JAHA.113.000582 The influence of epicardial and perivascular adipose tissue on cardiovascular disease is critically reviewed in the context of concomitant visceral adipose tissue accumulation. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clément K, Basdevant A, Dutour A. Weight of pericardial fat on coronaropathy. Arterioscler Thromb Vasc Biol. 2009;29(5):615–6.  https://doi.org/10.1161/ATVBAHA.108.182907.CrossRefPubMedGoogle Scholar
  10. 10.
    Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12(1):31–42.  https://doi.org/10.1089/met.2013.0107.CrossRefPubMedGoogle Scholar
  11. 11.
    Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014;34(9):1820–6.  https://doi.org/10.1161/ATVBAHA.114.303035.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    •• Piché ME, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018;13(4):213–21.  https://doi.org/10.1080/17446651.2018.1500894 Overview of epicardial adipose tissue with special emphasis on cardiac metabolism and its effects on the cardiovascular system. CrossRefPubMedGoogle Scholar
  13. 13.
    Silaghi A, Piercecchi-Marti MD, Grino M, Leonetti G, Alessi MC, Clement K, et al. Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring). 2008;16(11):2424–30.  https://doi.org/10.1038/oby.2008.379.
  14. 14.
    Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011;34(Suppl 2):S371–9.  https://doi.org/10.2337/dc11-s250.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    de Feyter PJ. Epicardial adipose tissue: an emerging role for the development of coronary atherosclerosis. Clin Cardiol. 2011;34(3):143–4.  https://doi.org/10.1002/clc.20893.CrossRefPubMedGoogle Scholar
  16. 16.
    Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009;22(12):1311–9; quiz 1417-1318.  https://doi.org/10.1016/j.echo.2009.10.013.CrossRefPubMedGoogle Scholar
  17. 17.
    Natale F, Tedesco MA, Mocerino R, de Simone V, Di Marco GM, Aronne L, et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiogr. 2009;10(4):549–55.  https://doi.org/10.1093/ejechocard/jep002.CrossRefPubMedGoogle Scholar
  18. 18.
    Iozzo P, Lautamaki R, Borra R, Lehto HR, Bucci M, Viljanen A, et al. Contribution of glucose tolerance and gender to cardiac adiposity. J Clin Endocrinol Metab. 2009;94(11):4472–82.  https://doi.org/10.1210/jc.2009-0436.
  19. 19.
    •• Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907–17.  https://doi.org/10.1113/JP273049 Critical review of the regulation of the myocardial redox state and electrical and contractile properties of cardiac myocytes by epicardial adipose tissue with special emphasis on the bidirectional aspect of the epicardial adipose tissue-heart interaction. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.  https://doi.org/10.1038/ncpcardio0319.CrossRefPubMedGoogle Scholar
  21. 21.
    Le Jemtel TH, Samson R, Milligan G, Jaiswal A, Oparil S. Visceral adipose tissue accumulation and residual cardiovascular risk. Curr Hypertens Rep. 2018;20(9):77.  https://doi.org/10.1007/s11906-018-0880-0.CrossRefPubMedGoogle Scholar
  22. 22.
    Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.  https://doi.org/10.1038/nature21363.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell. 2018;172(1–2):22–40.  https://doi.org/10.1016/j.cell.2017.12.025.CrossRefPubMedGoogle Scholar
  24. 24.
    Lumeng CN. Innate immune activation in obesity. Mol Asp Med. 2013;34(1):12–29.  https://doi.org/10.1016/j.mam.2012.10.002.CrossRefGoogle Scholar
  25. 25.
    Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14(12):1013–22.PubMedGoogle Scholar
  26. 26.
    Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ Res. 2016;118(5):842–55.  https://doi.org/10.1161/CIRCRESAHA.115.307856.
  27. 27.
    Li C, Li S, Zhang F, Wu M, Liang H, Song J, et al. Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE. Biochem Biophys Res Commun. 2018;495(2):1922–9.  https://doi.org/10.1016/j.bbrc.2017.11.195.
  28. 28.
    Cherian S, Lopaschuk GD, Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab. 2012;303(8):E937–49.  https://doi.org/10.1152/ajpendo.00061.2012.CrossRefPubMedGoogle Scholar
  29. 29.
    Renovato-Martins M, Matheus ME, de Andrade IR, Moraes JA, da Silva SV, Citelli Dos Reis M, et al. Microparticles derived from obese adipose tissue elicit a pro-inflammatory phenotype of CD16. Biochim Biophys Acta Mol basis Dis. 2017;1863(1):139–51.  https://doi.org/10.1016/j.bbadis.2016.09.016.CrossRefPubMedGoogle Scholar
  30. 30.
    Ansaldo AM, Montecucco F, Sahebkar A, Dallegri F, Carbone F. Epicardial adipose tissue and cardiovascular diseases. Int J Cardiol. 2019 Mar 1;278:254–60.  https://doi.org/10.1016/j.ijcard.2018.09.089.CrossRefPubMedGoogle Scholar
  31. 31.
    Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.  https://doi.org/10.1161/01.CIR.0000099542.57313.C5.
  32. 32.
    Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC, et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30(7):1340–6.  https://doi.org/10.1161/ATVBAHA.110.204719.
  33. 33.
    Mazurek T, Kobylecka M, Zielenkiewicz M, Kurek A, Kochman J, Filipiak KJ, et al. PET/CT evaluation of 18 FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease. Independent predictor of atherosclerotic lesions formation? J Nucl Cardiol. 2017;24(3):1075–84.  https://doi.org/10.1007/s12350-015-0370-6.
  34. 34.
    Zhou Y, Wei Y, Wang L, Wang X, Du X, Sun Z, et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc Diabetol. 2011;10:2.  https://doi.org/10.1186/1475-2840-10-2.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58(3):248–55.  https://doi.org/10.1016/j.jacc.2011.01.048.
  36. 36.
    Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65(1):85–95.  https://doi.org/10.2337/db15-0399.CrossRefPubMedGoogle Scholar
  37. 37.
    Vianello E, Dozio E, Arnaboldi F, Marazzi MG, Martinelli C, Lamont J, et al. Epicardial adipocyte hypertrophy: association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutr Metab Cardiovasc Dis. 2016;26(3):246–53.  https://doi.org/10.1016/j.numecd.2015.12.005.
  38. 38.
    Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2008;32(2):268–74.  https://doi.org/10.1038/sj.ijo.0803726.
  39. 39.
    Shimabukuro M, Hirata Y, Tabata M, Dagvasumberel M, Sato H, Kurobe H, et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33(5):1077–84.  https://doi.org/10.1161/ATVBAHA.112.300829.
  40. 40.
    Baker AR, Harte AL, Howell N, Pritlove DC, Ranasinghe AM, da Silva NF, et al. Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab. 2009;94(1):261–7.  https://doi.org/10.1210/jc.2007-2579.
  41. 41.
    Verhagen SN, Buijsrogge MP, Vink A, van Herwerden LA, van der Graaf Y, Visseren FL. Secretion of adipocytokines by perivascular adipose tissue near stenotic and non-stenotic coronary artery segments in patients undergoing CABG. Atherosclerosis. 2014;233(1):242–7.  https://doi.org/10.1016/j.atherosclerosis.2013.12.005.CrossRefPubMedGoogle Scholar
  42. 42.
    Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM. Epicardial fat thickness and coronary artery disease correlate independently of obesity. Int J Cardiol. 2011;146(3):452–4.  https://doi.org/10.1016/j.ijcard.2010.10.117.
  43. 43.
    Ahn SG, Lim HS, Joe DY, Kang SJ, Choi BJ, Choi SY, et al. Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart. 2008;94(3):e7.  https://doi.org/10.1136/hrt.2007.118471.
  44. 44.
    Jeong JW, Jeong MH, Yun KH, Oh SK, Park EM, Kim YK, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71(4):536–9.  https://doi.org/10.1253/circj.71.536.
  45. 45.
    Tachibana M, Miyoshi T, Osawa K, Toh N, Oe H, Nakamura K, et al. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart Vessel. 2016;31(11):1758–66.  https://doi.org/10.1007/s00380-016-0802-5.
  46. 46.
    Aprigliano G, Scuteri L, Iafelice I, Li Volsi L, Cuko B, Palloshi A, et al. Epicardial adipose tissue thickness and acute coronary syndrome: a matter of how much or how? Int J Cardiol. 2015;199:8–9.  https://doi.org/10.1016/j.ijcard.2015.06.168.
  47. 47.
    Sade LE, Eroglu S, Bozbaş H, Ozbiçer S, Hayran M, Haberal A, et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2009;204(2):580–5.  https://doi.org/10.1016/j.atherosclerosis.2008.09.038.CrossRefPubMedGoogle Scholar
  48. 48.
    Chaowalit N, Somers VK, Pellikka PA, Rihal CS, Lopez-Jimenez F. Subepicardial adipose tissue and the presence and severity of coronary artery disease. Atherosclerosis. 2006;186(2):354–9.  https://doi.org/10.1016/j.atherosclerosis.2005.08.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Saura D, Oliva MJ, Rodríguez D, Pascual-Figal DA, Hurtado JA, Pinar E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141(3):311–3.  https://doi.org/10.1016/j.ijcard.2008.11.127.
  50. 50.
    Kim BJ, Kang JG, Lee SH, Lee JY, Sung KC, Kim BS, et al. Relationship of echocardiographic epicardial fat thickness and epicardial fat volume by computed tomography with coronary artery calcification: data from the CAESAR study. Arch Med Res. 2017;48(4):352–9.  https://doi.org/10.1016/j.arcmed.2017.06.010.
  51. 51.
    Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, et al. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001;157(1):203–9.  https://doi.org/10.1016/S0021-9150(00)00709-7.
  52. 52.
    Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38(17):1294–302.  https://doi.org/10.1093/eurheartj/ehw045.
  53. 53.
    Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117(5):605–13.  https://doi.org/10.1161/CIRCULATIONAHA.107.743062.
  54. 54.
    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30(7):850–6.  https://doi.org/10.1093/eurheartj/ehn573.
  55. 55.
    Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90(3):499–504.  https://doi.org/10.3945/ajcn.2008.27358.
  56. 56.
    Oka T, Yamamoto H, Ohashi N, Kitagawa T, Kunita E, Utsunomiya H, et al. Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol. 2012;161(1):45–9.  https://doi.org/10.1016/j.ijcard.2011.04.021.
  57. 57.
    Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158(1):26–32.  https://doi.org/10.1016/j.ijcard.2010.12.085.
  58. 58.
    Cheng VY, Dey D, Tamarappoo B, Nakazato R, Gransar H, Miranda-Peats R, et al. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging. 2010;3(4):352–60.  https://doi.org/10.1016/j.jcmg.2009.12.013.
  59. 59.
    Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, et al. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging. 2010;3(11):1104–12.  https://doi.org/10.1016/j.jcmg.2010.07.014.
  60. 60.
    Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis. 2012;220(1):223–30.  https://doi.org/10.1016/j.atherosclerosis.2011.09.041.
  61. 61.
    Nakanishi R, Rajani R, Cheng VY, Gransar H, Nakazato R, Shmilovich H, et al. Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis. 2011;218(2):363–8.  https://doi.org/10.1016/j.atherosclerosis.2011.07.093.
  62. 62.
    Otaki Y, Rajani R, Cheng VY, Gransar H, Nakanishi R, Shmilovich H, et al. The relationship between epicardial fat volume and incident coronary artery calcium. J Cardiovasc Comput Tomogr. 2011;5(5):310–6.  https://doi.org/10.1016/j.jcct.2011.06.007.
  63. 63.
    Nakazato R, Dey D, Cheng VY, Gransar H, Slomka PJ, Hayes SW, et al. Epicardial fat volume and concurrent presence of both myocardial ischemia and obstructive coronary artery disease. Atherosclerosis. 2012;221(2):422–6.  https://doi.org/10.1016/j.atherosclerosis.2011.12.018.
  64. 64.
    Iwayama T, Nitobe J, Watanabe T, Ishino M, Tamura H, Nishiyama S, et al. Role of epicardial adipose tissue in coronary artery disease in non-obese patients. J Cardiol. 2014;63(5):344–9.  https://doi.org/10.1016/j.jjcc.2013.10.002.
  65. 65.
    Nerlekar N, Brown AJ, Muthalaly RG, Talman A, Hettige T, Cameron JD, et al. Association of epicardial adipose tissue and high-risk plaque characteristics: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(8):e006379.  https://doi.org/10.1161/JAHA.117.006379.
  66. 66.
    Mancio J, Azevedo D, Saraiva F, Azevedo AI, Pires-Morais G, Leite-Moreira A, et al. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2018;19(5):490–7.  https://doi.org/10.1093/ehjci/jex314.
  67. 67.
    Romijn MA, Danad I, Bakkum MJ, Stuijfzand WJ, Tulevski II, Somsen GA, et al. Incremental diagnostic value of epicardial adipose tissue for the detection of functionally relevant coronary artery disease. Atherosclerosis. 2015;242(1):161–6.  https://doi.org/10.1016/j.atherosclerosis.2015.07.005.
  68. 68.
    •• Tanami Y, Jinzaki M, Kishi S, Matheson M, Vavere AL, Rochitte CE, et al. Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ Cardiovasc Imaging. 2015;8(3):e002676.  https://doi.org/10.1161/CIRCIMAGING.114.002676 The strongest data that do not support an association between epicardial adipose tissue volume and the presence and severity of coronary artery disease in patients with known or suspected coronary artery disease. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Petrini M, Alì M, Cannaò PM, Zambelli D, Cozzi A, Codari M et al. Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: evaluation with cardiac magnetic resonance imaging. Clin Radiol. 2019;74(1):81.e1-.e7.  https://doi.org/10.1016/j.crad.2018.09.006.
  70. 70.
    Huang Cao ZF, Stoffel E, Cohen P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension. 2017;69(5):770–7.  https://doi.org/10.1161/HYPERTENSIONAHA.116.08451.CrossRefPubMedGoogle Scholar
  71. 71.
    Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253.  https://doi.org/10.3389/fphys.2018.00253.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Siegel-Axel DI, Häring HU. Perivascular adipose tissue: an unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17(1):51–60.  https://doi.org/10.1007/s11154-016-9346-3.CrossRefPubMedGoogle Scholar
  73. 73.
    Skiba DS, Nosalski R, Mikolajczyk TP, Siedlinski M, Rios FJ, Montezano AC, et al. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055–69.  https://doi.org/10.1111/bph.13685.
  74. 74.
    Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis. J Atheroscler Thromb. 2010;17(2):115–30.  https://doi.org/10.5551/jat.1735.CrossRefPubMedGoogle Scholar
  75. 75.
    Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics. 2013;45(16):697–709.  https://doi.org/10.1152/physiolgenomics.00042.2013.
  76. 76.
    Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840–4.  https://doi.org/10.1001/jama.1994.03510350050036.CrossRefPubMedGoogle Scholar
  77. 77.
    Magnani JW, Hylek EM, Apovian CM. Obesity begets atrial fibrillation: a contemporary summary. Circulation. 2013;128(4):401–5.  https://doi.org/10.1161/CIRCULATIONAHA.113.001840.CrossRefPubMedGoogle Scholar
  78. 78.
    Chatterjee NA, Giulianini F, Geelhoed B, Lunetta KL, Misialek JR, Niemeijer MN, et al. Genetic obesity and the risk of atrial fibrillation: causal estimates from Mendelian randomization. Circulation. 2017;135(8):741–54.  https://doi.org/10.1161/CIRCULATIONAHA.116.024921.
  79. 79.
    Homan EA, Reyes MV, Hickey KT, Morrow JP. Clinical overview of obesity and diabetes mellitus as risk factors for atrial fibrillation and sudden cardiac death. Front Physiol. 2018;9:1847.  https://doi.org/10.3389/fphys.2018.01847.CrossRefPubMedGoogle Scholar
  80. 80.
    Dublin S, French B, Glazer NL, Wiggins KL, Lumley T, Psaty BM, et al. Risk of new-onset atrial fibrillation in relation to body mass index. Arch Intern Med. 2006;166(21):2322–8.  https://doi.org/10.1001/archinte.166.21.2322.
  81. 81.
    Sidhu K, Tang A. Modifiable risk factors in atrial fibrillation: the role of alcohol, obesity, and sleep apnea. Can J Cardiol. 2017;33(7):947–9.  https://doi.org/10.1016/j.cjca.2017.04.006.CrossRefPubMedGoogle Scholar
  82. 82.
    Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114(9):1453–68.  https://doi.org/10.1161/CIRCRESAHA.114.303211.CrossRefPubMedGoogle Scholar
  83. 83.
    Munger TM, Dong YX, Masaki M, Oh JK, Mankad SV, Borlaug BA, et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J Am Coll Cardiol. 2012;60(9):851–60.  https://doi.org/10.1016/j.jacc.2012.03.042.
  84. 84.
    •• Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood JP, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015;66(1):1–11.  https://doi.org/10.1016/j.jacc.2015.04.058 Impressive experimental data linking obesity to infiltration of posterior left atrial wall by adipose tissue led to left atrial fibrosis and reduced posterior left atrial endocardial voltage. CrossRefPubMedGoogle Scholar
  85. 85.
    Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38(1):53–61.  https://doi.org/10.1093/eurheartj/ehv625.
  86. 86.
    Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3(4):345–50.  https://doi.org/10.1161/CIRCEP.109.912055.
  87. 87.
    Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57(17):1745–51.  https://doi.org/10.1016/j.jacc.2010.11.045.
  88. 88.
    Sanghai SR, Sardana M, Hansra B, Lessard DM, Dahlberg ST, Aurigemma GP, et al. Indexed left atrial adipose tissue area is associated with severity of atrial fibrillation and atrial fibrillation recurrence among patients undergoing catheter ablation. Front Cardiovasc Med. 2018;5:76.  https://doi.org/10.3389/fcvm.2018.00076.
  89. 89.
    Hatem SN, Redheuil A, Gandjbakhch E. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovasc Res. 2016;109(4):502–9.  https://doi.org/10.1093/cvr/cvw001.CrossRefPubMedGoogle Scholar
  90. 90.
    Batal O, Schoenhagen P, Shao M, Ayyad AE, Van Wagoner DR, Halliburton SS, et al. Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(3):230–6.  https://doi.org/10.1161/CIRCEP.110.957241.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhao L, Harrop DL, Ng ACT, Wang WYS. Epicardial adipose tissue is associated with left atrial dysfunction in people without obstructive coronary artery disease or atrial fibrillation. Can J Cardiol. 2018;34(8):1019–25.  https://doi.org/10.1016/j.cjca.2018.05.002.CrossRefPubMedGoogle Scholar
  92. 92.
    •• van Rosendael AR, Dimitriu-Leen AC, van Rosendael PJ, Leung M, Smit JM, Saraste A, et al. Association between posterior left atrial adipose tissue mass and atrial fibrillation. Circ Arrhythm Electrophysiol. 2017;10(2):e004614.  https://doi.org/10.1161/CIRCEP.116.004614 Unequivocal evidence that posterior left atrial tissue contributes to structural and electrical remodeling leading to atrial fibrillation. CrossRefPubMedGoogle Scholar
  93. 93.
    Tsao HM, Hu WC, Wu MH, Tai CT, Lin YJ, Chang SL, et al. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol. 2011;107(10):1498–503.  https://doi.org/10.1016/j.amjcard.2011.01.027.
  94. 94.
    Drossos G, Koutsogiannidis CP, Ananiadou O, Kapsas G, Ampatzidou F, Madesis A, et al. Pericardial fat is strongly associated with atrial fibrillation after coronary artery bypass graft surgery†. Eur J Cardiothorac Surg. 2014;46(6):1014–20; discussion 20.  https://doi.org/10.1093/ejcts/ezu043.
  95. 95.
    Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56(10):784–8.  https://doi.org/10.1016/j.jacc.2010.03.071.CrossRefPubMedGoogle Scholar
  96. 96.
    •• Wong CX, Sun MT, Odutayo A, Emdin CA, Mahajan R, Lau DH, et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9(12):e004378.  https://doi.org/10.1161/CIRCEP.116.004378 Solid evidence that the association of epicardial adipose tissue with atrial fibrillation is stronger than that with other ectopic adipose tissue depots. CrossRefPubMedGoogle Scholar
  97. 97.
    Kim TH, Park J, Park JK, Uhm JS, Joung B, Lee MH, et al. Pericardial fat volume is associated with clinical recurrence after catheter ablation for persistent atrial fibrillation, but not paroxysmal atrial fibrillation: an analysis of over 600-patients. Int J Cardiol. 2014;176(3):841–6.  https://doi.org/10.1016/j.ijcard.2014.08.008.
  98. 98.
    Kim JS, Shin SY, Kang JH, Yong HS, Na JO, Choi CU, et al. Influence of sex on the association between epicardial adipose tissue and left atrial transport function in patients with atrial fibrillation: a multislice computed tomography study. J Am Heart Assoc. 2017;6(8):e006077.  https://doi.org/10.1161/JAHA.117.006077.
  99. 99.
    Tsao HM, Hu WC, Tsai PH, Lee CL, Liu FC, Wang HH, et al. The abundance of epicardial adipose tissue surrounding left atrium is associated with the occurrence of stroke in patients with atrial fibrillation. Medicine (Baltimore). 2016;95(14):e3260.  https://doi.org/10.1097/MD.0000000000003260.
  100. 100.
    Cove CL, Albert CM, Andreotti F, Badimon L, Van Gelder IC, Hylek EM. Female sex as an independent risk factor for stroke in atrial fibrillation: possible mechanisms. Thromb Haemost. 2014;111(3):385–91.  https://doi.org/10.1160/TH13-04-0347.CrossRefPubMedGoogle Scholar
  101. 101.
    Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60(15):1381–9.  https://doi.org/10.1016/j.jacc.2012.06.016.
  102. 102.
    Foppa M, Pond KK, Jones DB, Schneider B, Kissinger KV, Manning WJ. Subcutaneous fat thickness, but not epicardial fat thickness, parallels weight reduction three months after bariatric surgery: a cardiac magnetic resonance study. Int J Cardiol. 2013;168(4):4532–3.  https://doi.org/10.1016/j.ijcard.2013.06.099.CrossRefPubMedGoogle Scholar
  103. 103.
    Wu FZ, Huang YL, Wu CC, Wang YC, Pan HJ, Huang CK, et al. Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits. Medicine (Baltimore). 2016;95(5):e2616.  https://doi.org/10.1097/MD.0000000000002616.
  104. 104.
    Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16(5):406–15.  https://doi.org/10.1111/obr.12270.CrossRefPubMedGoogle Scholar
  105. 105.
    Shimada YJ, Tsugawa Y, Camargo CA, Brown DFM, Hasegawa K. Effect of bariatric surgery on emergency department visits and hospitalizations for atrial fibrillation. Am J Cardiol. 2017;120(6):947–52.  https://doi.org/10.1016/j.amjcard.2017.06.026.CrossRefPubMedGoogle Scholar
  106. 106.
    Yılmaz M, Altın C, Tekin A, Erol T, Arer İ, Nursal TZ, et al. Assessment of atrial fibrillation and ventricular arrhythmia risk after bariatric surgery by P wave/QT interval dispersion. Obes Surg. 2018;28(4):932–8.  https://doi.org/10.1007/s11695-017-2923-z.
  107. 107.
    Lynch KT, Mehaffey JH, Hawkins RB, Hassinger TE, Hallowell PT, Kirby JL. Bariatric surgery reduces incidence of atrial fibrillation: a propensity score-matched analysis. Surg Obes Relat Dis. 2018;S1550-7289(18):31132–8.  https://doi.org/10.1016/j.soard.2018.11.021.CrossRefGoogle Scholar
  108. 108.
    Jamaly S, Carlsson L, Peltonen M, Jacobson P, Sjöström L, Karason K. Bariatric surgery and the risk of new-onset atrial fibrillation in Swedish obese subjects. J Am Coll Cardiol. 2016;68(23):2497–504.  https://doi.org/10.1016/j.jacc.2016.09.940.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74.  https://doi.org/10.1016/j.jcmg.2009.10.012.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA. 1991;266(2):231–6.  https://doi.org/10.1001/jama.1991.03470020057032.CrossRefPubMedGoogle Scholar
  111. 111.
    Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1):e002477.  https://doi.org/10.1161/JAHA.115.002477.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43(8):1432–8.  https://doi.org/10.1016/j.jacc.2003.11.040.
  113. 113.
    Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49(2):198–207.  https://doi.org/10.1016/j.jacc.2006.08.050.
  114. 114.
    Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.  https://doi.org/10.1016/j.jchf.2018.05.018.
  115. 115.
    Eaton CB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quddus A, et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ Heart Fail. 2016;9(10):e002883.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002883.
  116. 116.
    Cavalcante JL, Tamarappoo BK, Hachamovitch R, Kwon DH, Alraies MC, Halliburton S, et al. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am J Cardiol. 2012;110(12):1793–8.  https://doi.org/10.1016/j.amjcard.2012.07.045.
  117. 117.
    Lai YH, Hou CJ, Yun CH, Sung KT, Su CH, Wu TH, et al. The association among MDCT-derived three-dimensional visceral adiposities on cardiac diastology and dyssynchrony in asymptomatic population. BMC Cardiovasc Disord. 2015;15:142.  https://doi.org/10.1186/s12872-015-0136-8.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Iacobellis G, Leonetti F, Singh N, M Sharma A. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 2007;115(2):272–273.  https://doi.org/10.1016/j.ijcard.2006.04.016.
  119. 119.
    Hachiya K, Fukuta H, Wakami K, Goto T, Tani T, Ohte N. Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. Int J Cardiovasc Imaging. 2014;30(7):1393–8.  https://doi.org/10.1007/s10554-014-0472-2.CrossRefPubMedGoogle Scholar
  120. 120.
    Lee JJ, Pedley A, Hoffmann U, Massaro JM, Fox CS. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J Am Coll Cardiol. 2016;68(14):1509–21.  https://doi.org/10.1016/j.jacc.2016.06.067.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, et al. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol. 2014;114(11):1663–9.  https://doi.org/10.1016/j.amjcard.2014.08.037.
  122. 122.
    Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119(12):1586–91.  https://doi.org/10.1161/CIRCULATIONAHA.108.828970.
  123. 123.
    Granér M, Nyman K, Siren R, Pentikäinen MO, Lundbom J, Hakkarainen A, et al. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease. Circ Cardiovasc Imaging. 2015;8(1):e001979.  https://doi.org/10.1161/CIRCIMAGING.114.001979.
  124. 124.
    Liu J, Fox CS, Hickson DA, May WL, Ding J, Carr JJ, et al. Pericardial fat and echocardiographic measures of cardiac abnormalities: the Jackson Heart Study. Diabetes Care. 2011;34(2):341–6.  https://doi.org/10.2337/dc10-1312.
  125. 125.
    Nerlekar N, Muthalaly RG, Wong N, Thakur U, Wong DTL, Brown AJ, et al. Association of volumetric epicardial adipose tissue quantification and cardiac structure and function. J Am Heart Assoc. 2018;7(23):e009975.  https://doi.org/10.1161/JAHA.118.009975.
  126. 126.
    Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19.  https://doi.org/10.1161/CIRCULATIONAHA.116.026807.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Haykowsky MJ, Nicklas BJ, Brubaker PH, Hundley WG, Brinkley TE, Upadhya B, et al. Regional adipose distribution and its relationship to exercise intolerance in older obese patients who have heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6(8):640–9.  https://doi.org/10.1016/j.jchf.2018.06.002.
  128. 128.
    Kitzman DW, Lam CSP. Obese heart failure with preserved ejection fraction phenotype: from pariah to central player. Circulation. 2017;136(1):20–3.  https://doi.org/10.1161/CIRCULATIONAHA.117.028365.CrossRefPubMedGoogle Scholar
  129. 129.
    Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.  https://doi.org/10.1056/NEJMra063052.CrossRefPubMedGoogle Scholar
  130. 130.
    Dávila-Román VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40(2):271–7.  https://doi.org/10.1016/S0735-1097(02)01967-8.CrossRefPubMedGoogle Scholar
  131. 131.
    Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res. 2017;113(9):1074–86.  https://doi.org/10.1093/cvr/cvx106.CrossRefPubMedGoogle Scholar
  132. 132.
    Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes. 2013;37(7):972–9.  https://doi.org/10.1038/ijo.2012.170.CrossRefGoogle Scholar
  133. 133.
    van Woerden G, Gorter TM, Westenbrink BD, Willems TP, van Veldhuisen DJ, Rienstra M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail. 2018;20(11):1559–66.  https://doi.org/10.1002/ejhf.1283.CrossRefPubMedGoogle Scholar
  134. 134.
    Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398):eaal2658.  https://doi.org/10.1126/scitranslmed.aal2658.CrossRefPubMedGoogle Scholar
  135. 135.
    •• Rayner JJ, Banerjee R, Holloway CJ, Lewis AJM, Peterzan MA, Francis JM, et al. The relative contribution of metabolic and structural abnormalities to diastolic dysfunction in obesity. Int J Obes (Lond). 2018;42(3):441–7.  https://doi.org/10.1038/ijo.2017.239 Unique data that point to myocardial energetics and steatosis as major determinants of left ventricular diastolic function. These data also point to the preponderant role of visceral adipose tissue accumulation in the development of myocardial steatosis. CrossRefGoogle Scholar
  136. 136.
    Gaborit B, Kober F, Jacquier A, Moro PJ, Flavian A, Quilici J, et al. Epicardial fat volume is associated with coronary microvascular response in healthy subjects: a pilot study. Obesity (Silver Spring). 2012;20(6):1200–5.  https://doi.org/10.1038/oby.2011.283.
  137. 137.
    Ng ACT, Strudwick M, van der Geest RJ, Ng ACC, Gillinder L, Goo SY, et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging. 2018;11(8):e007372.  https://doi.org/10.1161/CIRCIMAGING.117.007372.
  138. 138.
    Nyman K, Granér M, Pentikäinen MO, Lundbom J, Hakkarainen A, Sirén R, et al. Cardiac steatosis and left ventricular function in men with metabolic syndrome. J Cardiovasc Magn Reson. 2013;15:103.  https://doi.org/10.1186/1532-429X-15-103.
  139. 139.
    Antonopoulos AS, Antoniades C. Cardiac magnetic resonance imaging of epicardial and intramyocardial adiposity as an early sign of myocardial disease. Circ Cardiovasc Imaging. 2018;11(8):e008083.  https://doi.org/10.1161/CIRCIMAGING.118.008083.CrossRefPubMedGoogle Scholar
  140. 140.
    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817–20.  https://doi.org/10.1016/S0140-6736(05)66585-3.CrossRefPubMedGoogle Scholar
  141. 141.
    •• Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Taguchi H, Shimada K. Relationships between periventricular epicardial adipose tissue accumulation, coronary microcirculation, and left ventricular diastolic dysfunction. Can J Cardiol. 2017;33(11):1489–97.  https://doi.org/10.1016/j.cjca.2017.08.001 First human study that links peri-ventricular adipose tissue to reduced coronary blood flow reserve and left ventricular diastolic dysfunction. The vaso-active molecules that are released by epicardial adipose tissue and affect coronary blood flow are unknown. CrossRefPubMedGoogle Scholar
  142. 142.
    Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, et al. Targeting obesity and diabetes to treat heart failure with preserved ejection fraction. Front Endocrinol. 2017;8:160.  https://doi.org/10.3389/fendo.2017.00160.
  143. 143.
    Rabkin SW. Is reduction in coronary blood flow the mechanism by which epicardial fat produces left ventricular diastolic dysfunction? Can J Cardiol. 2017;33(11):1459–61.  https://doi.org/10.1016/j.cjca.2017.08.013.CrossRefPubMedGoogle Scholar
  144. 144.
    Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22(6):889–902.  https://doi.org/10.1007/s10741-017-9644-1.CrossRefPubMedGoogle Scholar
  145. 145.
    von Roeder M, Rommel KP, Kowallick JT, Blazek S, Besler C, Fengler K, et al. Influence of left atrial function on exercise capacity and left ventricular function in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2017;10(4):e005467.  https://doi.org/10.1161/CIRCIMAGING.116.005467.CrossRefGoogle Scholar
  146. 146.
    Freed BH, Daruwalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, et al. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging. 2016;9(3):e003754.  https://doi.org/10.1161/CIRCIMAGING.115.003754.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thierry H. Le Jemtel
    • 1
    Email author
  • Rohan Samson
    • 1
  • Karnika Ayinapudi
    • 1
  • Twinkle Singh
    • 1
  • Suzanne Oparil
    • 2
  1. 1.Section of Cardiology, Department of MedicineTulane University School of Medicine; Tulane University Heart and Vascular InstituteNew OrleansUSA
  2. 2.Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations