The Role of Arterial Hypertension in Mitral Valve Regurgitation

  • Vasiliki Katsi
  • Georgios GeorgiopoulosEmail author
  • Nikolaos Magkas
  • Dimitrios Oikonomou
  • Agostino Virdis
  • Petros Nihoyannopoulos
  • Konstantinos Toutouzas
  • Dimitrios Tousoulis
Hypertension and the Heart (Bharathi Upadhya, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hypertension and the Heart


Purpose of Review

To review medical literature for evidence of association between hypertension and mitral regurgitation (MR) and summarize potential favorable effects of antihypertensive drugs on MR natural history and treatment.

Recent Findings

Hypertension and MR are common diseases affecting a large proportion of the general population. Contemporary evidence suggests that hypertension may worsen the progression and prognosis of MR through augmented mechanical stress and increased regurgitation volume. Renin-angiotensin axis inhibitors, beta-blockers, and vasodilators have been tested in order to prevent or decrease primary or secondary MR.


Although antihypertensive agents may improve hemodynamic parameters and left ventricular remodeling in primary MR, there is no strong evidence of benefit on clinical outcomes. On the other hand, a beneficial effect of these drugs on secondary MR is better established. Moreover, there are no studies evaluating a possible benefit of lower blood pressure targets in MR. Randomized controlled trials are warranted to elucidate the precise role of antihypertensive therapy on treatment of MR.


Mitral valve Mitral regurgitation Mitral calcification Hypertension Antihypertensive treatment 


Compliance with Ethical Standards

Conflict of Interest

The authors report no relationships that could be construed as a conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Supino PG, Borer JS, Preibisz J, Bornstein A. The epidemiology of valvular heart disease: a growing public health problem. Heart Fail Clin. 2006;2(4):379–93.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83(6):897–902.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    •• Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148(1):e1–e132. This comprehensive guideline document contains current recommendations of the American College of Cardiology/American Heart Association about the position of medical therapy in the management of mitral regurgiation as well as indications for interventional therapy. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    •• Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–91. This is a guideline statement that summarizes the current recommendations of the European Society of Cardiology and the European Association for Cardio-Thoracic Surgery for the medical and interventional management of mitral regurgitation. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    •• Harris KM, Pastorius CA, Duval S, Harwood E, Henry TD, Carabello BA, et al. Practice variation among cardiovascular physicians in management of patients with mitral regurgitation. Am J Cardiol. 2009;103(2):255–61. This is an interesting survey indicating a controversy between guidelines and everyday clinical practice, as it reported that a remarkable proportion of physicians administers medical therapy in MR patients without having a firm indication according to formal recommendations. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    •• Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50. This is an important epidemiological study that provides estimates about prevalence and control of hypertension in global popoulation as well as disparities of the values of these parameters among different world regions. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRefGoogle Scholar
  9. 9.
    Jones EC, Devereux RB, Roman MJ, Liu JE, Fishman D, Lee ET, et al. Prevalence and correlates of mitral regurgitation in a population-based sample (the Strong Heart Study). Am J Cardiol. 2001;87(3):298–304.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.CrossRefGoogle Scholar
  11. 11.
    • Stefano G, Fox K, Schluchter M, Hoit BD. Prevalence of unsuspected and significant mitral and aortic regurgitation. J Am Soc Echocardiogr. 2008;21(1):38–42. This a large echocardiography study (6851 participants) that reported the prevalence of valve regurgitation in a popoulation of patients referred for echocardiogram. CrossRefGoogle Scholar
  12. 12.
    Morita H, Mizushige K, Fukada H, Senda S, Matsuo H. Evaluation of left-sided valvular regurgitation in healthy, hypertensive and myocardial infarction subjects by Doppler echocardiography. Jpn Circ J. 1990;54(3):292–7.CrossRefGoogle Scholar
  13. 13.
    Lonati L, Cuspidi C, Sampieri L, Boselli L, Bocciolone M, Leonetti G, et al. Prevalence of physiological valvular regurgitation in hypertensive patients: echocardiographic and color Doppler study. Cardiology. 1992;81(6):365–70.CrossRefGoogle Scholar
  14. 14.
    Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant lesions of the mitral and aortic valves. J Am Coll Cardiol. 1996;28(5):1083–91.CrossRefGoogle Scholar
  15. 15.
    Heck I, Schmidt J, Mattern H, Fricke G, Kropp J, Reske S. Reduction of regurgitation in aortic and mitral insufficiency by captopril in acute and long-term trials. Schweiz Med Wochenschr. 1985;115(45):1615–8.PubMedGoogle Scholar
  16. 16.
    Wisenbaugh T, Sinovich V, Dullabh A, Sareli P. Six month pilot study of captopril for mildly symptomatic, severe isolated mitral and isolated aortic regurgitation. J Heart Valve Dis. 1994;3(2):197–204.PubMedGoogle Scholar
  17. 17.
    Schon HR. Hemodynamic and morphologic changes after long-term angiotensin converting enzyme inhibition in patients with chronic valvular regurgitation. J Hypertens Suppl. 1994;12(4):S95–104.PubMedGoogle Scholar
  18. 18.
    Host U, Kelbaek H, Hildebrandt P, Skagen K, Aldershvile J. Effect of ramipril on mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol. 1997;80(5):655–8.CrossRefGoogle Scholar
  19. 19.
    Marcotte F, Honos GN, Walling AD, Beauvais D, Blais MJ, Daoust C, et al. Effect of angiotensin-converting enzyme inhibitor therapy in mitral regurgitation with normal left ventricular function. Can J Cardiol. 1997;13(5):479–85.PubMedGoogle Scholar
  20. 20.
    Wong GC, Marcotte F, Rudski LG. Impact of chronic lisinopril therapy on left atrial volume versus dimension in chronic organic mitral regurgitation. Can J Cardiol. 2006;22(2):125–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tischler MD, Rowan M, LeWinter MM. Effect of enalapril therapy on left ventricular mass and volumes in asymptomatic chronic, severe mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol. 1998;82(2):242–5.CrossRefGoogle Scholar
  22. 22.
    Enriquez-Sarano M, Basmadjian AJ, Rossi A, Bailey KR, Seward JB, Tajik AJ. Progression of mitral regurgitation: a prospective Doppler echocardiographic study. J Am Coll Cardiol. 1999;34(4):1137–44.CrossRefGoogle Scholar
  23. 23.
    Gupta DK, Kapoor A, Garg N, Tewari S, Sinha N. Beneficial effects of nicorandil versus enalapril in chronic rheumatic severe mitral regurgitation: six months follow up echocardiographic study. J Heart Valve Dis. 2001;10(2):158–65.PubMedGoogle Scholar
  24. 24.
    Dujardin KS, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Effect of losartan on degree of mitral regurgitation quantified by echocardiography. Am J Cardiol. 2001;87(5):570–6.CrossRefGoogle Scholar
  25. 25.
    Harris KM, Aeppli DM, Carey CF. Effects of angiotensin-converting enzyme inhibition on mitral regurgitation severity, left ventricular size, and functional capacity. Am Heart J. 2005;150(5):1106.CrossRefGoogle Scholar
  26. 26.
    Sampaio RO, Grinberg M, Leite JJ, Tarasoutchi F, Chalela WA, Izaki M, et al. Effect of enalapril on left ventricular diameters and exercise capacity in asymptomatic or mildly symptomatic patients with regurgitation secondary to mitral valve prolapse or rheumatic heart disease. Am J Cardiol. 2005;96(1):117–21.CrossRefGoogle Scholar
  27. 27.
    Sekuri C, Utuk O, Bayturan O, Bilge A, Kurhan Z, Tavli T. Effect of losartan on exercise tolerance and echocardiographic parameters in patients with mitral regurgitation. J Renin Angiotensin Aldosterone Syst. 2008;9(2):107–11.CrossRefGoogle Scholar
  28. 28.
    •• Strauss CE, Duval S, Pastorius D, Harris KM. Pharmacotherapy in the treatment of mitral regurgitation: a systematic review. J Heart Valve Dis. 2012;21(3):275–85. This meta-analysis reported that treatment with RAAS inhibitors improved certain hemodynamic indices in MR patients.PubMedGoogle Scholar
  29. 29.
    • Supino PG, Khan N, Hai O, Herrold EM, Hochreiter C, Borer JS. Relation of indirect vasodilator use to prognosis in patients with chronic severe mitral regurgitation. Cardiology. 2014;129(4):262–6. This study reported that use of vasodilators conferred clinical benefit only in the hypertensive subgroup of a cohort of severe MR patients.CrossRefGoogle Scholar
  30. 30.
    Oh SH, Meyers DG. Afterload reduction may halt and beta-adrenergic blockade may worsen progression of left ventricular dysfunction in patients with chronic compensated mitral regurgitation: a retrospective cohort study. Angiology. 2007;58(2):196–202.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    •• Varadarajan P, Joshi N, Appel D, Duvvuri L, Pai RG. Effect of Beta-blocker therapy on survival in patients with severe mitral regurgitation and normal left ventricular ejection fraction. Am J Cardiol. 2008;102(5):611–5. Though observational, this is the largest study (n=895 patients) to report a survival benefit associated with use of medical therapy, specifically beta-blockers, in patients with severe primary MR.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stewart RA, Raffel OC, Kerr AJ, Gabriel R, Zeng I, Young AA, et al. Pilot study to assess the influence of beta-blockade on mitral regurgitant volume and left ventricular work in degenerative mitral valve disease. Circulation. 2008;118(10):1041–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ahmed MI, Aban I, Lloyd SG, Gupta H, Howard G, Inusah S, et al. A randomized controlled phase IIb trial of beta(1)-receptor blockade for chronic degenerative mitral regurgitation. J Am Coll Cardiol. 2012;60(9):833–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chatterjee K, Parmley WW, Swan HJ, Berman G, Forrester J, Marcus HS. Beneficial effects of vasodilator agents in severe mitral regurgitation due to dysfunction of subvalvar apparatus. Circulation. 1973;48(4):684–90.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goodman DJ, Rossen RM, Holloway EL, Alderman EL, Harrison DC. Effect of nitroprusside on left ventricular dynamics in mitral regurgitation. Circulation. 1974;50(5):1025–32.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Harshaw CW, Grossman W, Munro AB, McLaurin LP. Reduced systemic vascular resistance as therapy for severe mitral regurgitation of valvular origin. Ann Intern Med. 1975;83(3):312–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Greenberg BH, Massie BM, Brundage BH, Botvinick EH, Parmley WW, Chatterjee K. Beneficial effects of hydralazine in severe mitral regurgitation. Circulation. 1978;58(2):273–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Greenberg BH, DeMots H, Murphy E, Rahimtoola SH. Arterial dilators in mitral regurgitation: effects on rest and exercise hemodynamics and long-term clinical follow-up. Circulation. 1982;65(1):181–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cacciapuoti F, Perrone N, Diaspro R, Galzerano D, Gentile S, Lapiello B. Slowing of mitral valve annular calcium in systemic hypertension by nifedipine and comparisons with enalapril and atenolol. Am J Cardiol. 1993;72(14):1038–42.CrossRefGoogle Scholar
  40. 40.
    Kelbaek H, Aldershvile J, Skagen K, Hildebrandt P, Nielsen SL. Pre- and afterload reduction in chronic mitral regurgitation: a double-blind randomized placebo-controlled trial of the acute and 2 weeks' effect of nifedipine or isosorbide dinitrate treatment on left ventricular function and the severity of mitral regurgitation. Br J Clin Pharmacol. 1996;41(6):493–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kizilbash AM, Willett DL, Brickner ME, Heinle SK, Grayburn PA. Effects of afterload reduction on vena contracta width in mitral regurgitation. J Am Coll Cardiol. 1998;32(2):427–31.CrossRefGoogle Scholar
  42. 42.
    Weiland DS, Konstam MA, Salem DN, Martin TT, Cohen SR, Zile MR, et al. Contribution of reduced mitral regurgitant volume to vasodilator effect in severe left ventricular failure secondary to coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1986;58(10):1046–50.CrossRefGoogle Scholar
  43. 43.
    Stevenson LW, Bellil D, Grover-McKay M, Brunken RC, Schwaiger M, Tillisch JH, et al. Effects of afterload reduction (diuretics and vasodilators) on left ventricular volume and mitral regurgitation in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1987;60(8):654–8.CrossRefGoogle Scholar
  44. 44.
    Stevenson LW, Brunken RC, Belil D, Grover-McKay M, Schwaiger M, Schelbert HR, et al. Afterload reduction with vasodilators and diuretics decreases mitral regurgitation during upright exercise in advanced heart failure. J Am Coll Cardiol. 1990;15(1):174–80.CrossRefGoogle Scholar
  45. 45.
    Hamilton MA, Stevenson LW, Child JS, Moriguchi JD, Walden J, Woo M. Sustained reduction in valvular regurgitation and atrial volumes with tailored vasodilator therapy in advanced congestive heart failure secondary to dilated (ischemic or idiopathic) cardiomyopathy. Am J Cardiol. 1991;67(4):259–63.CrossRefGoogle Scholar
  46. 46.
    Seneviratne B, Moore GA, West PD. Effect of captopril on functional mitral regurgitation in dilated heart failure: a randomised double blind placebo controlled trial. Br Heart J. 1994;72(1):63–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Levine TB, Levine AB, Keteyian SJ, Narins B, Lesch M. Reverse remodeling in heart failure with intensification of vasodilator therapy. Clin Cardiol. 1997;20(8):697–702.CrossRefGoogle Scholar
  48. 48.
    Levine AB, Muller C, Levine TB. Effects of high-dose lisinopril-isosorbide dinitrate on severe mitral regurgitation and heart failure remodeling. Am J Cardiol. 1998;82(10):1299–301 a10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lowes BD, Gill EA, Abraham WT, Larrain JR, Robertson AD, Bristow MR, et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol. 1999;83(8):1201–5.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Capomolla S, Febo O, Gnemmi M, Riccardi G, Opasich C, Caporotondi A, et al. Beta-blockade therapy in chronic heart failure: diastolic function and mitral regurgitation improvement by carvedilol. Am Heart J. 2000;139(4):596–608.CrossRefGoogle Scholar
  51. 51.
    • Okura H, Kataoka T, Yoshida K. Renin-angiotensin system inhibitors in patients with myocardial infarction and secondary mitral regurgitation. Heart. 2016;102(9):694–700. In this study, treatment with with RAAS inhibitors was associated with significantly better survival and event-free survival in 296 patients with myocardial infarction and at least moderate MR.CrossRefGoogle Scholar
  52. 52.
    • Kim K, Kaji S, Kasamoto M, Murai R, Sasaki Y, Kitai T, et al. Renin-angiotensin system inhibitors in patients with or without ischaemic mitral regurgitation after acute myocardial infarction. Open Heart. 2017;4(2):e000637. This retrospective study included 551 patients with at least mild MR due to ischemic heart and is the largest study to report a survival benefit conferred by RAAS inhibitors in secondary MR.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    •• Rahimi K, Mohseni H, Otto CM. Elevated blood pressure and risk of mitral regurgitation: a longitudinal cohort study of 5.5 million United Kingdom adults. PLoS Med. 2017;14(10):e1002404. In this study, investigators examined a huge number of medical records (n = 5,553,984) and found a direct association between high blood pressure and mitral regurgitation. Google Scholar
  54. 54.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    • Ennezat PV, Marechaux S, Pibarot P, Le Jemtel TH. Secondary mitral regurgitation in heart failure with reduced or preserved left ventricular ejection fraction. Cardiology. 2013;125(2):110–7. This comprehensive review discusses a common but underrecognized entity that is functional MR in HFpEF result from increased LA pressure and dimensions. Since hypertension is a common cause of HFpEF, these considerations provide an indirect link between hypertension and functional MR. CrossRefGoogle Scholar
  56. 56.
    Marechaux S, Pincon C, Poueymidanette M, Verhaeghe M, Bellouin A, Asseman P, et al. Elevated left atrial pressure estimated by Doppler echocardiography is a key determinant of mitral valve tenting in functional mitral regurgitation. Heart. 2010;96(4):289–97.CrossRefGoogle Scholar
  57. 57.
    Tanimoto M, Pai RG. Effect of isolated left atrial enlargement on mitral annular size and valve competence. Am J Cardiol. 1996;77(9):769–74.CrossRefGoogle Scholar
  58. 58.
    • Gertz ZM, Raina A, Saghy L, Zado ES, Callans DJ, Marchlinski FE, et al. Evidence of atrial functional mitral regurgitation due to atrial fibrillation: reversal with arrhythmia control. J Am Coll Cardiol. 2011;58(14):1474–81. This interesting study examined a cohort of AF patients and reported a higher prevalence of hypertension in patients with moderate or severe secondary MR compared to those with mild or less MR, while restoration of sinus rhythm resulted in MR improvement. Given that hypertension is considered a risk factor for AF, these data strengthen the link between hypertension and functional MR. CrossRefGoogle Scholar
  59. 59.
    • Kajimoto K, Sato N, Takano T. Functional mitral regurgitation at discharge and outcomes in patients hospitalized for acute decompensated heart failure with a preserved or reduced ejection fraction. Eur J Heart Fail. 2016;18(8):1051–9. This is a large registry with 4482 HF patients that found no association hypertension and presence or severity of secondary MR. CrossRefGoogle Scholar
  60. 60.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.CrossRefGoogle Scholar
  61. 61.
    Teo LY, Chan LL, Lam CS. Heart failure with preserved ejection fraction in hypertension. Curr Opin Cardiol. 2016;31(4):410–6.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386(9989):154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Singh RG, Cappucci R, Kramer-Fox R, Roman MJ, Kligfield P, Borer JS, et al. Severe mitral regurgitation due to mitral valve prolapse: risk factors for development, progression, and need for mitral valve surgery. Am J Cardiol. 2000;85(2):193–8.CrossRefGoogle Scholar
  64. 64.
    Gorlin R, Gorlin SG. Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I Am Heart J. 1951;41(1):1–29.CrossRefGoogle Scholar
  65. 65.
    Jose AD, Bernstein L, Taylor RR. The influence of arterial pressure on mitral incompetence in man. J Clin Invest. 1964;43:2094–103.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Adler Y, Fink N, Spector D, Wiser I, Sagie A. Mitral annulus calcification—a window to diffuse atherosclerosis of the vascular system. Atherosclerosis. 2001;155(1):1–8.CrossRefGoogle Scholar
  67. 67.
    • Ljungberg J, Johansson B, Engstrom KG, Albertsson E, Holmer P, Norberg M, et al. Traditional cardiovascular risk factors and their relation to future surgery for valvular heart disease or ascending aortic disease: a case-referent study. J Am Heart Assoc. 2017;6(5):e005133. This study compared 181 patients who underwent surgery for MR with 717 matched controls and reported between hypertension and MR necessitating intervention. Google Scholar
  68. 68.
    Wada Y, Mizushige K, Ohmori K, Iwado Y, Kohno M, Matsuo H. Prevention of cerebral thromboembolism by low-dose anticoagulant therapy in atrial fibrillation with mitral regurgitation. J Cardiovasc Pharmacol. 2001;37(4):422–6.CrossRefGoogle Scholar
  69. 69.
    Juang JJ, Ke SR, Lin JL, Hwang JJ, Hsu KL, Chiang FT, et al. Rupture of mitral chordae tendineae: adding to the list of hypertension complications. Heart. 2009;95(12):976–9.CrossRefGoogle Scholar
  70. 70.
    Lin TH, Su HM, Voon WC, Lai HM, Yen HW, Lai WT, et al. Association between hypertension and primary mitral chordae tendinae rupture. Am J Hypertens. 2006;19(1):75–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    • David TE, Armstrong S, Ivanov J. Chordal replacement with polytetrafluoroethylene sutures for mitral valve repair: a 25-year experience. J Thorac Cardiovasc Surg. 2013;145(6):1563–9. This study enrolled 606 patients with mitral valve repair and identified hypertension as a risk factor for recurrent moderate or severe MR. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kim GS, Lee CH, Kim JB, Jung SH, Choo SJ, Chung CH, et al. Echocardiographic evaluation of mitral durability following valve repair in rheumatic mitral valve disease: impact of Maze procedure. J Thorac Cardiovasc Surg. 2014;147(1):247–53.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Glower DD, Bashore TM, Harrison JK, Wang A, Gehrig T, Rankin JS. Pure annular dilation as a cause of mitral regurgitation: a clinically distinct entity of female heart disease. J Heart Valve Dis. 2009;18(3):284–8.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Aslam F, Haque A, Foody J, Shirani J. The frequency and functional impact of overlapping hypertension on hypertrophic cardiomyopathy: a single-center experience. J Clin Hypertens (Greenwich). 2010;12(4):240–5.CrossRefGoogle Scholar
  75. 75.
    Movahed MR, Saito Y, Ahmadi-Kashani M, Ebrahimi R. Mitral annulus calcification is associated with valvular and cardiac structural abnormalities. Cardiovasc Ultrasound. 2007;5:14.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Savage DD, Garrison RJ, Castelli WP, McNamara PM, Anderson SJ, Kannel WB, et al. Prevalence of submitral (anular) calcium and its correlates in a general population-based sample (the Framingham Study). Am J Cardiol. 1983;51(8):1375–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Boon A, Cheriex E, Lodder J, Kessels F. Cardiac valve calcification: characteristics of patients with calcification of the mitral annulus or aortic valve. Heart. 1997;78(5):472–4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Aronow WS, Schwartz KS, Koenigsberg M. Correlation of serum lipids, calcium and phosphorus, diabetes mellitus, aortic valve stenosis and history of systemic hypertension with presence or absence of mitral anular calcium in persons older than 62 years in a long-term health care facility. Am J Cardiol. 1987;59(4):381–2.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kanjanauthai S, Nasir K, Katz R, Rivera JJ, Takasu J, Blumenthal RS, et al. Relationships of mitral annular calcification to cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2010;213(2):558–62.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kontos J, Papademetriou V, Wachtell K, Palmieri V, Liu JE, Gerdts E, et al. Impact of valvular regurgitation on left ventricular geometry and function in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens. 2004;18(6):431–6.CrossRefGoogle Scholar
  81. 81.
    Song BG, On YK, Jeon ES, Kim DK, Lee SC, Park SW, et al. Atrioventricular reverse remodeling after valve repair for chronic severe mitral regurgitation: 1-year follow-up. Clin Cardiol. 2010;33(10):630–7.CrossRefGoogle Scholar
  82. 82.
    Stulak JM, Suri RM, Dearani JA, Burkhart HM, Sundt TM 3rd, Enriquez-Sarano M, et al. Does early surgical intervention improve left ventricular mass regression after mitral valve repair for leaflet prolapse? J Thorac Cardiovasc Surg. 2011;141(1):122–9.CrossRefGoogle Scholar
  83. 83.
    •• Slipczuk L, Rafique AM, Davila CD, Beigel R, Pressman GS, Siegel RJ. The role of medical therapy in moderate to severe degenerative mitral regurgitation. Rev Cardiovasc Med. 2016;17(1-2):28–39. This a thorough recent review that discusses interesting aspects of MR pathophysiology and summarizes the current posistion of medical therapy in MR management.PubMedGoogle Scholar
  84. 84.
    Corin WJ, Monrad ES, Murakami T, Nonogi H, Hess OM, Krayenbuehl HP. The relationship of afterload to ejection performance in chronic mitral regurgitation. Circulation. 1987;76(1):59–67.CrossRefGoogle Scholar
  85. 85.
    Wisenbaugh T, Spann JF, Carabello BA. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation. J Am Coll Cardiol. 1984;3(4):916–23.CrossRefGoogle Scholar
  86. 86.
    Dell'Italia LJ. The renin-angiotensin system in mitral regurgitation: a typical example of tissue activation. Curr Cardiol Rep. 2002;4(2):97–103.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Starling MR. Emerging biology of mitral regurgitation: implications for further therapy. Adv Cardiol. 2002;39:15–24.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mehta RH, Supiano MA, Oral H, Grossman PM, Montgomery DS, Smith MJ, et al. Compared with control subjects, the systemic sympathetic nervous system is activated in patients with mitral regurgitation. Am Heart J. 2003;145(6):1078–85.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Mehta RH, Supiano MA, Grossman PM, Oral H, Montgomery DG, Briesmiester KA, et al. Changes in systemic sympathetic nervous system activity after mitral valve surgery and their relationship to changes in left ventricular size and systolic performance in patients with mitral regurgitation. Am Heart J. 2004;147(4):729–35.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nishimura RA, Carabello BA, Faxon DP, Freed MD, Lytle BW, O'Gara PT, et al. ACC/AHA 2008 guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Catheter Cardiovasc Interv. 2008;72(3):E1–e12.CrossRefGoogle Scholar
  91. 91.
    Carabello BA. The current therapy for mitral regurgitation. J Am Coll Cardiol. 2008;52(5):319–26.CrossRefGoogle Scholar
  92. 92.
    Bax JJ, Poldermans D. Mitral regurgitation and left ventricular dyssynchrony: implications for treatment. Heart. 2006;92(10):1363–4.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dillon AR, Dell'Italia LJ, Tillson M, Killingsworth C, Denney T, Hathcock J, et al. Left ventricular remodeling in preclinical experimental mitral regurgitation of dogs. J Vet Cardiol. 2012;14(1):73–92.CrossRefGoogle Scholar
  94. 94.
    Rosenhek R, Rader F, Klaar U, Gabriel H, Krejc M, Kalbeck D, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation. 2006;113(18):2238–44.CrossRefGoogle Scholar
  95. 95.
    Grayburn PA. Vasodilator therapy for chronic aortic and mitral regurgitation. Am J Med Sci. 2000;320(3):202–8.CrossRefGoogle Scholar
  96. 96.
    Starling MR, Kirsh MM, Montgomery DG, Gross MD. Impaired left ventricular contractile function in patients with long-term mitral regurgitation and normal ejection fraction. J Am Coll Cardiol. 1993;22(1):239–50.CrossRefGoogle Scholar
  97. 97.
    Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.CrossRefGoogle Scholar
  98. 98.
    Badhwar V, Peterson ED, Jacobs JP, He X, Brennan JM, O'Brien SM, et al. Longitudinal outcome of isolated mitral repair in older patients: results from 14,604 procedures performed from 1991 to 2007. Ann Thorac Surg. 2012;94(6):1870–7 discussion 7-9.CrossRefGoogle Scholar
  99. 99.
    Enriquez-Sarano M, Tajik AJ, Schaff HV, Orszulak TA, Bailey KR, Frye RL. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation. 1994;90(2):830–7.CrossRefGoogle Scholar
  100. 100.
    Haan CK, Cabral CI, Conetta DA, Coombs LP, Edwards FH. Selecting patients with mitral regurgitation and left ventricular dysfunction for isolated mitral valve surgery. Ann Thorac Surg. 2004;78(3):820–5.CrossRefGoogle Scholar
  101. 101.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRefGoogle Scholar
  102. 102.
    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vasiliki Katsi
    • 1
  • Georgios Georgiopoulos
    • 1
    Email author
  • Nikolaos Magkas
    • 1
  • Dimitrios Oikonomou
    • 2
  • Agostino Virdis
    • 3
  • Petros Nihoyannopoulos
    • 1
  • Konstantinos Toutouzas
    • 1
  • Dimitrios Tousoulis
    • 1
  1. 1.First Department of Cardiology, ‘Hippokration’ HospitalUniversity of Athens, Medical SchoolAthensGreece
  2. 2.Department of Cardiology‘Evaggelismos’ General HospitalAthensGreece
  3. 3.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations