Chronotherapy for Hypertension

  • N. P. Bowles
  • S. S. Thosar
  • M. X. Herzig
  • S. A. Shea
Sleep and Hypertension (SJ Thomas, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sleep and Hypertension


Purpose of Review

Given the emerging knowledge that circadian rhythmicity exists in every cell and all organ systems, there is increasing interest in the possible benefits of chronotherapy for many diseases. There is a well-documented 24-h pattern of blood pressure with a morning surge that may contribute to the observed morning increase in adverse cardiovascular events. Historically, antihypertensive therapy involves morning doses, usually aimed at reducing daytime blood pressure surges, but an absence of nocturnal dipping blood pressure is also associated with increased cardiovascular risk.

Recent Findings

To more effectively reduce nocturnal blood pressure and still counteract the morning surge in blood pressure, a number of studies have examined moving one or more antihypertensives from morning to bedtime dosing. More recently, such studies of chronotherapy have studied comorbid populations including obstructive sleep apnea, chronic kidney disease, or diabetes.


Here, we summarize major findings from recent research in this area (2013–2017). In general, nighttime administration of antihypertensives improved overall 24-h blood pressure profiles regardless of disease comorbidity. However, inconsistencies between studies suggest a need for more prospective randomized controlled trials with sufficient statistical power. In addition, experimental studies to ascertain mechanisms by which chronotherapy is beneficial could aid drug design and guidelines for timed administration.


Hypertension Chronotherapy Blood pressure Non-dipping Sleep Circadian rhythms 


Funding Information

This work was supported by NIH grants R01 HL125893, R01 HL125893-03S1, R01 HL142064, and R01 HL140577 (to S A Shea); F32-HL131308 (to S S Thosar); a Ford Foundation Fellowship (to N P Bowles); and the Oregon Institute of Occupational Health Sciences at Oregon Health & Science University via funds from the Division of Consumer and Business Services of the State of Oregon (ORS 656.630).

Compliance with Ethical Standards

Conflict of Interest

Dr. Bowles reports grants from the Ford Foundation and the National Institutes of Health in support of this work. Ms. Herzig reports grants from National Institutes of Health in support of this work. Dr. Shea reports grants from the National Institutes of Health and other funds from the State of Oregon in support of this work; and grants from the United States Department of Defense and Center for Disease Control outside the submitted work. Dr. Thosar reports grants from the National Institutes of Health in support of this work; and a grant from the United States Center for Disease Control outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet. 1999;37(3):213–55.Google Scholar
  2. 2.
    Lemmer B. Temporal aspects in the effects of cardiovascular active drugs in man. Chronopharmacology—Cellular and Biochemical Interactions. 1989:525–42.Google Scholar
  3. 3.
    Rumble RH, Roberts MS, Denton MJ. Effects of posture and sleep on the pharmacokinetics of paracetamol (acetaminophen) and its metabolites. Clin Pharmacokinet. 1991;20(2):167–73.Google Scholar
  4. 4.
    Baraldo M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol. 2008;4(2):175–92.Google Scholar
  5. 5.
    Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018;128(6):2157–67.Google Scholar
  6. 6.
    Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry. 2004;43(27):8718–24.Google Scholar
  7. 7.
    Morris CJ, Purvis TE, Mistretta J, Hu K, Scheer FA. Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J Biol Rhythm. 2017;32(2):154–64.Google Scholar
  8. 8.
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24.Google Scholar
  9. 9.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics—2014 update a report from the American Heart Association. Circulation. 2014;129(3):399–410.Google Scholar
  10. 10.
    Degaute J-P, Van De Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991;18(2):199–210.Google Scholar
  11. 11.
    Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, et al. Circadian variation in the frequency of sudden cardiac death. Circulation. 1987;75(1):131–8.Google Scholar
  12. 12.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;2017.Google Scholar
  13. 13.
    Burgess HJ, Trinder J, Kim Y, Luke D. Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Phys. 1997;273(4 Pt 2):H1761–8.Google Scholar
  14. 14.
    Dodt C, Breckling U, Derad I, Fehm HL, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension. 1997;30(1 Pt 1):71–6.Google Scholar
  15. 15.
    Brotman DJ, Davidson MB, Boumitri M, Vidt DG. Impaired diurnal blood pressure variation and all-cause mortality. Am J Hypertens. 2008;21(1):92–7.Google Scholar
  16. 16.
    Grimaldi D, Provini F, Calandra-Buonaura G, Barletta G, Cecere A, Pierangeli G, et al. Cardiovascular-sleep interaction in drug-naive patients with essential grade I hypertension. Chronobiol Int. 2013;30(1–2):31–42.Google Scholar
  17. 17.
    O'Brien E, Sheridan J, O'Malley K. Dippers and non-dippers. Lancet. 1988;332(8607):397.Google Scholar
  18. 18.
    Kario K, Shimada K. Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens. 2004;26(2):177–89.Google Scholar
  19. 19.
    Birkenhager AM, van den Meiracker AH. Causes and consequences of a non-dipping blood pressure profile. Neth J Med. 2007;65(4):127–31.Google Scholar
  20. 20.
    Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009;23(10):645–53.Google Scholar
  21. 21.
    Salles GF, Reboldi G, Fagard RH, Cardoso CR, Pierdomenico SD, Verdecchia P, et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension. 2016;67(4):693–700.Google Scholar
  22. 22.
    Ermiş N, Otlu YÖ, Afşin A, Hidayet Ş, Açıkgöz N, Cansel M, et al. Comparison of left atrial volume and function in non-dipper versus dipper hypertensives: a real-time three-dimensional echocardiography study. Anatolian journal of cardiology. 2016;16(6):428–33.Google Scholar
  23. 23.
    Acar G, Bulut M, Arslan K, Alizade E, Ozkan B, Alici G, et al. Comparison of left atrial mechanical function in nondipper versus dipper hypertensive patients: a speckle tracking study. Echocardiography. 2013;30(2):164–70.Google Scholar
  24. 24.
    Tadic M, Cuspidi C, Pencic B, Ivanovic B, Scepanovic R, Marjanovic T, et al. Circadian blood pressure pattern and right ventricular and right atrial mechanics: a two- and three-dimensional echocardiographic study. J Am Soc Hypertens. 2014;8(1):45–53.Google Scholar
  25. 25.
    Liu M, Takahashi H, Morita Y, Maruyama S, Mizuno M, Yuzawa Y, et al. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant. 2003;18(3):563–9.Google Scholar
  26. 26.
    Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, et al. “Non-dipper” hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.Google Scholar
  27. 27.
    Ukkola O, Vasunta R-L, Kesäniemi YA. Non-dipping pattern in ambulatory blood pressure monitoring is associated with metabolic abnormalities in a random sample of middle-aged subjects. Hypertens Res. 2009;32(11):1022–7.Google Scholar
  28. 28.
    Suzuki M, Guilleminault C, Otsuka K, Shiomi T. Blood pressure “dipping” and “non-dipping” in obstructive sleep apnea syndrome patients. Sleep. 1996;19(5):382–7.Google Scholar
  29. 29.
    Wang C, Zhang J, Liu X, Li C, Ye Z, Peng H, et al. Reversed dipper blood-pressure pattern is closely related to severe renal and cardiovascular damage in patients with chronic kidney disease. PLoS One. 2013;8(2):e55419.Google Scholar
  30. 30.
    Yan B, Peng L, Han D, Sun L, Dong Q, Yang P, et al. Blood pressure reverse-dipping is associated with early formation of carotid plaque in senior hypertensive patients. Medicine (Baltimore). 2015;94(10):e604.Google Scholar
  31. 31.
    Yan B, Peng L, Dong Q, Zheng F, Yang P, Sun L, et al. Reverse-dipper pattern of blood pressure may predict lacunar infarction in patients with essential hypertension. Eur J Neurol. 2015;22(6):1022–5.Google Scholar
  32. 32.
    Huang Y, Mai W, Hu Y, Wu Y, Song Y, Qiu R, et al. Poor sleep quality, stress status, and sympathetic nervous system activation in nondipping hypertension. Blood Press Monit. 2011;16(3):117–23.Google Scholar
  33. 33.
    Schillaci G, Verdecchia P, Borgioni C, Ciucci A, Gattobigio R, Sacchi N, et al. Predictors of diurnal blood pressure changes in 2042 subjects with essential hypertension. J Hypertens. 1996;14(10):1167–73.Google Scholar
  34. 34.
    Pedulla M, Silvestri R, Lasco A, Mento G, Lanuzza B, Sofia L, et al. Sleep structure in essential hypertensive patients: differences between dippers and non-dippers. Blood Press. 1995;4(4):232–7.Google Scholar
  35. 35.
    Huang Y, Mai W, Cai X, Hu Y, Song Y, Qiu R, et al. The effect of zolpidem on sleep quality, stress status, and nondipping hypertension. Sleep Med. 2012;13(3):263–8.Google Scholar
  36. 36.
    Smolensky MH, Hermida RC, Ayala DE, Tiseo R, Portaluppi F. Administration-time-dependent effects of blood pressure-lowering medications: basis for the chronotherapy of hypertension. Blood Press Monit. 2010;15(4):173–80.Google Scholar
  37. 37.
    Pickering TG, Levenstein M, Walmsley P. Nighttime dosing of doxazosin has peak effect on morning ambulatory blood pressure. Results of the HALT study. Hypertension and Lipid Trial Study Group. Am J Hypertens. 1994;7(9 Pt 1):844–7.Google Scholar
  38. 38.
    Lemmer B, Nold G, Behne S, Kaiser R. Chronopharmacokinetics and cardiovascular effects of nifedipine. Chronobiol Int. 1991;8(6):485–94.Google Scholar
  39. 39.
    Hermida RC, Calvo C, Ayala DE, Dominguez MJ, Covelo M, Fernandez JR, et al. Administration-time-dependent effects of doxazosin GITS on ambulatory blood pressure of hypertensive subjects. Chronobiol Int. 2004;21(2):277–96.Google Scholar
  40. 40.
    Langner B, Lemmer B. Circadian changes in the pharmacokinetics and cardiovascular effects of oral propranolol in healthy subjects. Eur J Clin Pharmacol. 1988;33(6):619–24.Google Scholar
  41. 41.
    Palatini P, Mos L, Motolese M, Mormino P, Del Torre M, Varotto L, et al. Effect of evening versus morning benazepril on 24-hour blood pressure: a comparative study with continuous intraarterial monitoring. Int J Clin Pharmacol Ther Toxicol. 1993;31(6):295–300.Google Scholar
  42. 42.
    Witte K, Weisser K, Neubeck M, Mutschler E, Lehmann K, Hopf R, et al. Cardiovascular effects, pharmacokinetics, and converting enzyme inhibition of enalapril after morning versus evening administration. Clin Pharmacol Ther. 1993;54(2):177–86.Google Scholar
  43. 43.
    Morgan T, Anderson A, Jones E. The effect on 24 h blood pressure control of an angiotensin converting enzyme inhibitor (perindopril) administered in the morning or at night. J Hypertens. 1997;15(2):205–11.Google Scholar
  44. 44.
    Palatini P. Can an angiotensin-converting enzyme inhibitor with a short half-life effectively lower blood pressure for 24 hours? Am Heart J. 1992;123(5):1421–5.Google Scholar
  45. 45.
    Palatini P, Racioppa A, Raule G, Zaninotto M, Penzo M, Pessina AC. Effect of timing of administration on the plasma ACE inhibitory activity and the antihypertensive effect of quinapril. Clin Pharmacol Ther. 1992;52(4):378–83.Google Scholar
  46. 46.
    Myburgh DP, Verho M, Botes JH, Erasmus TP, Luus HG. 24-Hour blood pressure control with ramipril: comparison of once-daily morning and evening administration. Curr Ther Res. 1995;56(12):1298–306.Google Scholar
  47. 47.
    Kuroda T, Kario K, Hoshide S, Hashimoto T, Nomura Y, Saito Y, et al. Effects of bedtime vs. morning administration of the long-acting lipophilic angiotensin-converting enzyme inhibitor trandolapril on morning blood pressure in hypertensive patients. Hypertens Res. 2004;27(1):15–20.Google Scholar
  48. 48.
    Middeke M, Kluglich M, Holzgreve H. Chronopharmacology of captopril plus hydrochlorothiazide in hypertension: morning versus evening dosing. Chronobiol Int. 1991;8(6):506–10.Google Scholar
  49. 49.
    Kohno I, Ijiri H, Takusagawa M, Yin D, Sano S, Ishihara T, et al. Effect of imidapril in dipper and nondipper hypertensive patients: comparison between morning and evening administration. Chronobiol Int. 2000;17(2):209–19.Google Scholar
  50. 50.
    Hermida RC, Calvo C, Ayala DE, Dominguez MJ, Covelo M, Fernandez JR, et al. Administration time-dependent effects of valsartan on ambulatory blood pressure in hypertensive subjects. Hypertension. 2003;42(3):283–90.Google Scholar
  51. 51.
    Hermida RC, Calvo C, Ayala DE, Mojon A, Rodriguez M, Chayan L, et al. Administration time-dependent effects of valsartan on ambulatory blood pressure in elderly hypertensive subjects. Chronobiol Int. 2005;22(4):755–76.Google Scholar
  52. 52.
    Hermida RC, Ayala DE, Chayan L, Mojon A, Fernandez JR. Administration-time-dependent effects of olmesartan on the ambulatory blood pressure of essential hypertension patients. Chronobiol Int. 2009;26(1):61–79.Google Scholar
  53. 53.
    Hermida RC, Ayala DE, Fernandez JR, Calvo C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension. 2007;50(4):715–22.Google Scholar
  54. 54.
    Hermida RC, Calvo C, Ayala DE, Fernandez JR, Covelo M, Mojon A, et al. Treatment of non-dipper hypertension with bedtime administration of valsartan. J Hypertens. 2005;23(10):1913–22.Google Scholar
  55. 55.
    Hermida RC, Ayala DE, Mojon A, Chayan L, Dominguez MJ, Fontao MJ, et al. Comparison of the effects on ambulatory blood pressure of awakening versus bedtime administration of torasemide in essential hypertension. Chronobiol Int. 2008;25(6):950–70.Google Scholar
  56. 56.
    Okeahialam BN, Ohihoin EN, Ajuluchukwu JN. Diuretic drugs benefit patients with hypertension more with night-time dosing. Ther Adv Drug Saf. 2012;3(6):273–8.Google Scholar
  57. 57.
    Nold G, Strobel G, Lemmer B. Morning versus evening amlodipine treatment: effect on circadian blood pressure profile in essential hypertensive patients. Blood Press Monit. 1998;3(1):17–25.Google Scholar
  58. 58.
    Qiu YG, Chen JZ, Zhu JH, Yao XY. Differential effects of morning or evening dosing of amlodipine on circadian blood pressure and heart rate. Cardiovasc Drugs Ther. 2003;17(4):335–41.Google Scholar
  59. 59.
    Kitahara Y, Saito F, Akao M, Fujita H, Takahashi A, Taguchi H, et al. Effect of morning and bedtime dosing with cilnidipine on blood pressure, heart rate, and sympathetic nervous activity in essential hypertensive patients. J Cardiovasc Pharmacol. 2004;43(1):68–73.Google Scholar
  60. 60.
    Kohno I, Iwasaki H, Okutani M, Mochizuki Y, Sano S, Satoh Y, et al. Administration-time-dependent effects of diltiazem on the 24-hour blood pressure profile of essential hypertension patients. Chronobiol Int. 1997;14(1):71–84.Google Scholar
  61. 61.
    Fogari R, Malacco E, Tettamanti F, Gnemmi AE, Milani M. Evening vs morning isradipine sustained release in essential hypertension: a double-blind study with 24 h ambulatory monitoring. Br J Clin Pharmacol. 1993;35(1):51–4.Google Scholar
  62. 62.
    Portaluppi F, Vergnani L, Manfredini R, degli Uberti EC, Fersini C. Time-dependent effect of isradipine on the nocturnal hypertension in chronic renal failure. Am J Hypertens. 1995;8(7):719–26.Google Scholar
  63. 63.
    Greminger P, Suter PM, Holm D, Kobelt R, Vetter W. Morning versus evening administration of nifedipine gastrointestinal therapeutic system in the management of essential hypertension. Clin Investig. 1994;72(11):864–9.Google Scholar
  64. 64.
    White WB, Mansoor GA, Pickering TG, Vidt DG, Hutchinson HG, Johnson RB, et al. Differential effects of morning and evening dosing of nisoldipine ER on circadian blood pressure and heart rate. Am J Hypertens. 1999;12(8 Pt 1):806–14.Google Scholar
  65. 65.
    Umeda T, Naomi S, Iwaoka T, Inoue J, Sasaki M, Ideguchi Y, et al. Timing for administration of an antihypertensive drug in the treatment of essential hypertension. Hypertension. 1994;23(1 Suppl):I211–4.Google Scholar
  66. 66.
    Hermida RC, Calvo C, Ayala DE, Lopez JE, Rodriguez M, Chayan L, et al. Dose- and administration time-dependent effects of nifedipine gits on ambulatory blood pressure in hypertensive subjects. Chronobiol Int. 2007;24(3):471–93.Google Scholar
  67. 67.
    Meilhac B, Mallion JM, Carre A, Chanudet X, Poggi L, Gosse P, et al. Study of the influence of the time of administration on the antihypertensive effect and nitrendipine tolerance in mild to moderate essential hypertensive patients. Value of ambulatory recording of blood pressure on 24 hours. Therapie. 1992;47(3):205–10.Google Scholar
  68. 68.
    Hermida RC, Ayala DE, Mojon A, Alonso I, Fernandez JR. Reduction of morning blood pressure surge after treatment with nifedipine GITS at bedtime, but not upon awakening, in essential hypertension. Blood Press Monit. 2009;14(4):152–9.Google Scholar
  69. 69.
    Trialists’Collaboration A. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.Google Scholar
  70. 70.
    Hermida RC, Ayala DE, Calvo C, López JE. Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am Coll Cardiol. 2005;46(6):975–83.Google Scholar
  71. 71.
    Ayala DE, Hermida RC. Sex differences in the administration-time-dependent effects of low-dose aspirin on ambulatory blood pressure in hypertensive subjects. Chronobiol Int. 2010;27(2):345–62.Google Scholar
  72. 72.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR. Ambulatory blood pressure control with bedtime aspirin administration in subjects with prehypertension. Am J Hypertens. 2009;22(8):896–903.Google Scholar
  73. 73.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51.Google Scholar
  74. 74.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care. 2011;34(6):1270–6.Google Scholar
  75. 75.
    Hermida RC, Ayala DE, Fernandez JR, Calvo C. Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension. Hypertension. 2008;51(1):69–76.Google Scholar
  76. 76.
    Neldam S, Dahlof B, Oigman W, Schumacher H. Early combination therapy with telmisartan plus amlodipine for rapid achievement of blood pressure goals. Int J Clin Pract. 2013;67(9):843–52.Google Scholar
  77. 77.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.Google Scholar
  78. 78.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.Google Scholar
  79. 79.
    Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326(7404):1427–0.Google Scholar
  80. 80.
    Saini SD, Schoenfeld P, Kaulback K, Dubinsky MC. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15(6):e22–33.Google Scholar
  81. 81.
    •• Ayala DE, Hermida RC, Mojon A, Fernandez JR. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int. 2013;30(1–2):340–52 Results of a randomized control trial with multiyear ABPM follow-up, which showed improved nocturnal BP with evening administration of antihypertensive medications.Google Scholar
  82. 82.
    Bonten TN, Snoep JD, Assendelft WJ, Zwaginga JJ, Eikenboom J, Huisman MV, et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: a randomized cross-over trial. Hypertension. 2015;65(4):743–50.Google Scholar
  83. 83.
    • Farah R, Makhoul N, Arraf Z, Khamisy-Farah R. Switching therapy to bedtime for uncontrolled hypertension with a nondipping pattern: a prospective randomized-controlled study. Blood Press Monit. 2013;18(4):227–31 Prospective study of CCB and ACEi administration; bedtime dosing resulted in better BP control than awakening dosing.Google Scholar
  84. 84.
    Fujiwara T, Hoshide S, Yano Y, Kanegae H, Kario K. Comparison of morning vs bedtime administration of the combination of valsartan/amlodipine on nocturnal brachial and central blood pressure in patients with hypertension. J Clin Hypertens (Greenwich). 2017;19:1319–26.Google Scholar
  85. 85.
    Hermida RC, Rios MT, Crespo JJ, Moya A, Dominguez-Sardina M, Otero A, et al. Treatment-time regimen of hypertension medications significantly affects ambulatory blood pressure and clinical characteristics of patients with resistant hypertension. Chronobiol Int. 2013;30(1–2):192–206.Google Scholar
  86. 86.
    Huangfu W, Duan P, Xiang D, Gao R. Administration time-dependent effects of combination therapy on ambulatory blood pressure in hypertensive subjects. Int J Clin Exp Med. 2015;8(10):19156–61.Google Scholar
  87. 87.
    Kario K, Hoshide S, Uchiyama K, Yoshida T, Okazaki O, Noshiro T, et al. Dose timing of an angiotensin II receptor blocker/calcium channel blocker combination in hypertensive patients with paroxysmal atrial fibrillation. J Clin Hypertens (Greenwich). 2016;18(10):1036–44.Google Scholar
  88. 88.
    Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood pressure and adherence in high-risk patients; a randomized crossover trial. Int J Cardiol. 2015;181:193–9.Google Scholar
  89. 89.
    Mori H, Yamamoto H, Ukai H, Yuasa S, Nakajima K, Mikawa T, et al. Comparison of effects of angiotensin II receptor blocker on morning home blood pressure and cardiorenal protection between morning administration and evening administration in hypertensive patients: the COMPATIBLE study. Hypertens Res. 2013;36(3):202–7.Google Scholar
  90. 90.
    Santiago LM, Pereira C, Botas P, Simoes AR, Carvalho R, Pimenta G, et al. Hypertensive patients in a general practice setting: comparative analysis between controlled and uncontrolled hypertension. Rev Port Cardiol. 2014;33(7–8):419–24.Google Scholar
  91. 91.
    Suomela I, Varis J, Kantola I. The antihypertensive effect of ASA lasts less than 24 hours? World J Cardiovasc Dis. 2015;5(03):62–70.Google Scholar
  92. 92.
    Szauder I, Csajagi E, Major Z, Pavlik G, Ujhelyi G. Treatment of hypertension: favourable effect of the twice-daily compared to the once-daily (evening) administration of perindopril and losartan. Kidney Blood Press Res. 2015;40(4):374–85.Google Scholar
  93. 93.
    Ushijima K, Nakashima H, Shiga T, Harada K, Ishikawa S, Ioka T, et al. Different chronotherapeutic effects of valsartan and olmesartan in non-dipper hypertensive patients during valsartan treatment at morning. J Pharmacol Sci. 2015;127(1):62–8.Google Scholar
  94. 94.
    •• Zappe DH, Crikelair N, Kandra A, Palatini P. Time of administration important? Morning versus evening dosing of valsartan. J Hypertens. 2015;33(2):385–92 Larger multisite prospective study that spanned five European countries.Google Scholar
  95. 95.
    •• Roush GC, Fapohunda J, Kostis JB. Evening dosing of antihypertensive therapy to reduce cardiovascular events: a third type of evidence based on a systematic review and meta-analysis of randomized trials. J Clin Hypertens (Greenwich). 2014;16(8):561–8 Meta-analysis, which demonstrated evening dosing trials significantly decreased relative risk for cardiovascular events compared to usual dosing trials.Google Scholar
  96. 96.
    Crippa G, Zabzuni D, Cassi A, Bravi E. Effect of bedtime dosing of barnidipine hydrochloride in non-dipper hypertensive patients with obstructive sleep apnoea not treated with continuous positive airway pressure. Eur Rev Med Pharmacol Sci. 2016;20(2):339–44.Google Scholar
  97. 97.
    •• Kario K, Kuwabara M, Hoshide S, Nagai M, Shimpo M. Effects of nighttime single-dose administration of vasodilating vs sympatholytic antihypertensive agents on sleep blood pressure in hypertensive patients with sleep apnea syndrome. J Clin Hypertens (Greenwich). 2014;16(6):459–66 Parallel-group crossover trial utilizing trigger sleep BP to compare efficacy of two hypertensive medications in patients with OSA.Google Scholar
  98. 98.
    • Kasiakogias A, Tsioufis C, Thomopoulos C, Andrikou I, Aragiannis D, Dimitriadis K, et al. Evening versus morning dosing of antihypertensive drugs in hypertensive patients with sleep apnoea: a cross-over study. J Hypertens. 2015;33(2):393–400 Prospective crossover trial, which compared morning and evening dosing of ARB and CCB to improve BP dipping in individuals with OSA. Google Scholar
  99. 99.
    Serinel Y, Yee BJ, Grunstein RR, Wong KH, Cistulli PA, Arima H, et al. Chronotherapy for hypertension in obstructive sleep apnoea (CHOSA): a randomised, double-blind, placebo-controlled crossover trial. Thorax. 2017;72(6):550–8.Google Scholar
  100. 100.
    Yoshida T, Kuwabara M, Hoshide S, Kario K. The effect of the bedtime-dosing doxazosin on nocturnal hypoxia-triggered blood pressure surge in a young adult man with severe obstructive sleep apnea syndrome and a history of three recurrent sleep-onset strokes. Blood Press Monit. 2017;22(3):173–4.Google Scholar
  101. 101.
    Crespo JJ, Piñeiro L, Otero A, Castiñeira C, Ríos MT, Regueiro A, et al. Administration-time-dependent effects of hypertension treatment on ambulatory blood pressure in patients with chronic kidney disease. Chronobiol Int. 2013;30(1–2):159–75.Google Scholar
  102. 102.
    Sakai Y, Suzuki A, Mugishima K, Sumi Y, Otsuka Y, Otsuka T, et al. Comparison of once daily versus twice daily olmesartan in patients with chronic kidney disease. Int J Nephrol Renovasc Dis. 2013;6:223–7.Google Scholar
  103. 103.
    •• Rahman M, Greene T, Phillips RA, Agodoa LY, Bakris GL, Charleston J, et al. A trial of 2 strategies to reduce nocturnal blood pressure in blacks with chronic kidney disease. Hypertension. 2013;61(1):82–8 US study examining the use of antihypertensive medications administered at night compared to the morning in a Black population with CKD. Google Scholar
  104. 104.
    Wang C, Zhang J, Liu X, Li CC, Ye ZC, Peng H, et al. Effect of valsartan with bedtime dosing on chronic kidney disease patients with nondipping blood pressure pattern. J Clin Hypertens (Greenwich). 2013;15(1):48–54.Google Scholar
  105. 105.
    Ciobanu D, Veresiu I, Bala C, Roman G, Mircea P, editors. Benefits of bedtime hypertension medication in type 2 diabetes demonstrated on ambulatory blood pressure monitoring. Proceedings of the 49th Annual Scientific Meeting of the European Society for Clinical Investigation Edited by Dumitrascu DL, Portincasa P Medimond, Italy; 2015.Google Scholar
  106. 106.
    •• Hermida RC, Ayala DE, Mojon A, Fernandez JR. Bedtime ingestion of hypertension medications reduces the risk of new-onset type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59(2):255–65 Large randomized clinical trial with long-term follow-up focused on ABPM of patients with new-onset diabetes. Google Scholar
  107. 107.
    •• Hjortkjaer HO, Jensen T, Kofoed KF, Mogensen UM, Sigvardsen PE, Kober L, et al. Nocturnal antihypertensive treatment in patients with type 1 diabetes with autonomic neuropathy and non-dipping: a randomised, placebo-controlled, double-blind cross-over trial. BMJ Open. 2016;6(12):e012307 Only study looking at time of day administration of antihypertensive medication in individuals with type 1 diabetes.Google Scholar
  108. 108.
    • Rossen NB, Knudsen ST, Fleischer J, Hvas AM, Ebbehoj E, Poulsen PL, et al. Targeting nocturnal hypertension in type 2 diabetes mellitus. Hypertension. 2014;64(5):1080–7 Open-label crossover trial, which compared morning and evening administration of the patients once-daily medication. Google Scholar
  109. 109.
    •• Wang C, Ye Y, Liu C, Zhou Y, Lv L, Cheng C, et al. Evening versus morning dosing regimen drug therapy for chronic kidney disease patients with hypertension in blood pressure patterns: a systematic review and meta-analysis. Intern Med J. 2017;47(8):900–6 Meta-analysis concluded that evening dosing of hypertension medication in patients with CKD improved nocturnal BP and dipping status. Google Scholar
  110. 110.
    Hermida RC, Ayala DE, Crespo JJ, Mojon A, Chayan L, Fontao MJ, et al. Influence of age and hypertension treatment-time on ambulatory blood pressure in hypertensive patients. Chronobiol Int. 2013;30(1–2):176–91.Google Scholar
  111. 111.
    Smolensky MH, Hermida RC, Portaluppi F. Comparison of the efficacy of morning versus evening administration of olmesartan in uncomplicated essential hypertension. Chronobiol Int. 2007;24(1):171–81.Google Scholar
  112. 112.
    Bem D, Dretzke J, Stevens S, Lordkipanidze M, Hodgkinson J, Bayliss S, et al. Investigating the effectiveness of different aspirin dosing regimens and the timing of aspirin intake in primary and secondary prevention of cardiovascular disease: protocol for a systematic review. Syst Rev. 2015;4:88.Google Scholar
  113. 113.
    •• Bem D, Lordkipanidze M, Hodgkinson J, Stevens S, Bayliss S, Moore D, et al. The effects of different aspirin dosing frequencies and the timing of aspirin intake in primary and secondary prevention of cardiovascular disease: a systematic review. Clin Pharmacol Ther. 2016;100(5):500–12 Systematic review, which suggested reduced BP when aspirin was administered at night in individuals with prehypertension or mild hypertension.Google Scholar
  114. 114.
    Ridker PM, Manson JE, Buring JE, Muller JE, Hennekens CH. Circadian variation of acute myocardial infarction and the effect of low-dose aspirin in a randomized trial of physicians. Circulation. 1990;82(3):897–902.Google Scholar
  115. 115.
    Krousel-Wood M, Thomas S, Muntner P, Morisky D. Medication adherence: a key factor in achieving blood pressure control and good clinical outcomes in hypertensive patients. Curr Opin Cardiol. 2004;19(4):357–62.Google Scholar
  116. 116.
    Weycker D, Keskinaslan A, Levy DG, Edelsberg J, Kartashov A, Oster G. Effectiveness of add-on therapy with amlodipine in hypertensive patients receiving valsartan. Blood Press. 2008;17(sup2):5–12.Google Scholar
  117. 117.
    Allemann Y, Fraile B, Lambert M, Barbier M, Ferber P, Izzo JL. Efficacy of the combination of amlodipine and valsartan in patients with hypertension uncontrolled with previous monotherapy: the Exforge in Failure after Single Therapy (EX-FAST) study. J Clin Hypertens. 2008;10(3):185–94.Google Scholar
  118. 118.
    Oparil S. Newly emerging pharmacologic differences in angiotensin II receptor blockers. Am J Hypertens. 2000;13(1 Pt 2):18S–24S.Google Scholar
  119. 119.
    Wong ND, Lopez VA, L’Italien G, Chen R, Kline SE, Franklin SS. Inadequate control of hypertension in US adults with cardiovascular disease comorbidities in 2003–2004. Arch Intern Med. 2007;167(22):2431–6.Google Scholar
  120. 120.
    Johnson ML, Pietz K, Battleman DS, Beyth RJ. Prevalence of comorbid hypertension and dyslipidemia and associated cardiovascular disease. Am J Manag Care. 2004;10(12):926–32.Google Scholar
  121. 121.
    Elliott WJ. Drug interactions and drugs that affect blood pressure. J Clin Hypertens. 2006;8(10):731–7.Google Scholar
  122. 122.
    Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ. 2000;320(7233):479–82.Google Scholar
  123. 123.
    Strollo PJ Jr, Rogers RM. Obstructive sleep apnea. N Engl J Med. 1996;334(2):99–104.Google Scholar
  124. 124.
    Hla KM, Young TB, Bidwell T, Palta M, Skatrud JB, Dempsey J. Sleep apnea and hypertension. A population-based study. Ann Intern Med. 1994;120(5):382–8.Google Scholar
  125. 125.
    Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA. 2000;283(14):1829–36.Google Scholar
  126. 126.
    Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.Google Scholar
  127. 127.
    Marin JM, Agusti A, Villar I, Forner M, Nieto D, Carrizo SJ, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012;307(20):2169–76.Google Scholar
  128. 128.
    Barbe F, Duran-Cantolla J, Sanchez-de-la-Torre M, Martinez-Alonso M, Carmona C, Barcelo A, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;307(20):2161–8.Google Scholar
  129. 129.
    Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc. 2008;5(2):173–8.Google Scholar
  130. 130.
    Guo J, Sun Y, Xue LJ, Huang ZY, Wang YS, Zhang L, et al. Effect of CPAP therapy on cardiovascular events and mortality in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath. 2016;20(3):965–74.Google Scholar
  131. 131.
    Hu X, Fan J, Chen S, Yin Y, Zrenner B. The role of continuous positive airway pressure in blood pressure control for patients with obstructive sleep apnea and hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2015;17(3):215–22.Google Scholar
  132. 132.
    Schein AS, Kerkhoff AC, Coronel CC, Plentz RD, Sbruzzi G. Continuous positive airway pressure reduces blood pressure in patients with obstructive sleep apnea; a systematic review and meta-analysis with 1000 patients. J Hypertens. 2014;32(9):1762–73.Google Scholar
  133. 133.
    Lawes CM, Rodgers A, Bennett DA, Parag V, Suh I, Ueshima H, et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J Hypertens. 2003;21(4):707–16.Google Scholar
  134. 134.
    Diogo LN, Monteiro EC. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions. Front Physiol. 2014;5:361.Google Scholar
  135. 135.
    Pepin JL, Tamisier R, Barone-Rochette G, Launois SH, Levy P, Baguet JP. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. Am J Respir Crit Care Med. 2010;182(7):954–60.Google Scholar
  136. 136.
    Kasai T, Bradley TD, Friedman O, Logan AG. Effect of intensified diuretic therapy on overnight rostral fluid shift and obstructive sleep apnoea in patients with uncontrolled hypertension. J Hypertens. 2014;32(3):673–80.Google Scholar
  137. 137.
    Thunstrom E, Manhem K, Rosengren A, Peker Y. Blood pressure response to losartan and continuous positive airway pressure in hypertension and obstructive sleep apnea. Am J Respir Crit Care Med. 2016;193(3):310–20.Google Scholar
  138. 138.
    Walia HK, Li H, Rueschman M, Bhatt DL, Patel SR, Quan SF, et al. Association of severe obstructive sleep apnea and elevated blood pressure despite antihypertensive medication use. J Clin Sleep Med. 2014;10(8):835–43.Google Scholar
  139. 139.
    Varounis C, Katsi V, Kallikazaros IE, Tousoulis D, Stefanadis C, Parissis J, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: a systematic review and meta-analysis. Int J Cardiol. 2014;175(1):195–8.Google Scholar
  140. 140.
    Nabe B, Lies A, Pankow W, Kohl FV, Lohmann FW. Determinants of circadian blood pressure rhythm and blood pressure variability in obstructive sleep apnoea. J Sleep Res. 1995;4(S1):97–101.Google Scholar
  141. 141.
    Lavie P, Yoffe N, Berger I, Peled R. The relationship between the severity of sleep apnea syndrome and 24-h blood pressure values in patients with obstructive sleep apnea. Chest. 1993;103(3):717–21.Google Scholar
  142. 142.
    Portaluppi F, Provini F, Cortelli P, Plazzi G, Bertozzi N, Manfredini R, et al. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension. J Hypertens. 1997;15(11):1227–33.Google Scholar
  143. 143.
    Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.Google Scholar
  144. 144.
    Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Phillipson EA. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest. 1997;99(1):106–9.Google Scholar
  145. 145.
    Ziegler MG, Milic M, Sun P. Antihypertensive therapy for patients with obstructive sleep apnea. Curr Opin Nephrol Hypertens. 2011;20(1):50–5.Google Scholar
  146. 146.
    Baguet JP, Hammer L, Levy P, Pierre H, Rossini E, Mouret S, et al. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apnoeic patients. J Hypertens. 2005;23(3):521–7.Google Scholar
  147. 147.
    Pankow W, Nabe B, Lies A, Becker H, Kohler U, Kohl FV, et al. Influence of sleep apnea on 24-hour blood pressure. Chest. 1997;112(5):1253–8.Google Scholar
  148. 148.
    Hla KM, Young T, Finn L, Peppard PE, Szklo-Coxe M, Stubbs M. Longitudinal association of sleep-disordered breathing and nondipping of nocturnal blood pressure in the Wisconsin Sleep Cohort Study. Sleep. 2008;31(6):795–800.Google Scholar
  149. 149.
    Mokhlesi B, Hagen EW, Finn LA, Hla KM, Carter JR, Peppard PE. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: a longitudinal analysis of the Wisconsin Sleep Cohort. Thorax. 2015;70(11):1062–9.Google Scholar
  150. 150.
    Shirasaki O, Yamashita S, Kawara S, Tagami K, Ishikawa J, Shimada K, et al. A new technique for detecting sleep apnea-related “midnight” surge of blood pressure. Hypertens Res. 2006;29(9):695–702.Google Scholar
  151. 151.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.Google Scholar
  152. 152.
    Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81.Google Scholar
  153. 153.
    Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, McClellan W. Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. Kidney Int. 2003;64(2):610–5.Google Scholar
  154. 154.
    Van Biesen W, De Bacquer D, Verbeke F, Delanghe J, Lameire N, Vanholder R. The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur Heart J. 2007;28(4):478–83.Google Scholar
  155. 155.
    Perlman RL, Finkelstein FO, Liu L, Roys E, Kiser M, Eisele G, et al. Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. Am J Kidney Dis. 2005;45(4):658–66.Google Scholar
  156. 156.
    National Kidney F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.Google Scholar
  157. 157.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.Google Scholar
  158. 158.
    Torbjornsdotter TB, Jaremko GA, Berg UB. Nondipping and its relation to glomerulopathy and hyperfiltration in adolescents with type 1 diabetes. Diabetes Care. 2004;27(2):510–6.Google Scholar
  159. 159.
    Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.Google Scholar
  160. 160.
    C-y H, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8.Google Scholar
  161. 161.
    Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36(3):646–61.Google Scholar
  162. 162.
    Palmer BF. Hypertension management in patients with chronic kidney disease. Curr Hypertens Rep. 2008;10(5):367–73.Google Scholar
  163. 163.
    Etgen T, Chonchol M, Forstl H, Sander D. Chronic kidney disease and cognitive impairment: a systematic review and meta-analysis. Am J Nephrol. 2012;35(5):474–82.Google Scholar
  164. 164.
    Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987–96.Google Scholar
  165. 165.
    Fedecostante M, Spannella F, Cola G, Espinosa E, Dessì-Fulgheri P, Sarzani R. Chronic kidney disease is characterized by “double trouble” higher pulse pressure plus night-time systolic blood pressure and more severe cardiac damage. PLoS One. 2014;9(1):e86155.Google Scholar
  166. 166.
    Portaluppi F, Montanari L, Massari M, Di Chiara V, Capanna M. Loss of nocturnal decline of blood pressure in hypertension due to chronic renal failure. Am J Hypertens. 1991;4(1 Pt 1):20–6.Google Scholar
  167. 167.
    Agarwal R, Andersen MJ. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69(7):1175–80.Google Scholar
  168. 168.
    Liu X, Liu X, Huang W, Leo S, Li Y, Liu M, et al. Evening -versus morning- dosing drug therapy for chronic kidney disease patients with hypertension: a systematic review. Kidney Blood Press Res. 2014;39(5):427–40.Google Scholar
  169. 169.
    Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond). 1989;77(1):105–11.Google Scholar
  170. 170.
    Pons M, Forpomes O, Espagnet S, Cambar J. Relationship between circadian changes in renal hemodynamics and circadian changes in urinary glycosaminoglycan excretion in normal rats. Chronobiol Int. 1996;13(5):349–58.Google Scholar
  171. 171.
    Hilfenhaus M. Circadian rhythm of the renin-angiotensin-aldosterone system in the rat. Arch Toxicol. 1976;36(3–4):305–16.Google Scholar
  172. 172.
    Morawska-Barszczewska J, Guzek JW, Kaczorowska-Skora J. Cholecystokinin octapeptide and the daily rhythm of vasopressin and oxytocin release. Exp Clin Endocrinol Diabetes. 1996;104(2):164–71.Google Scholar
  173. 173.
    Stepien M, Witte K, Lemmer B. Chronobiologic evaluation of angiotensin-converting enzyme activity in serum and lung tissue from normotensive and spontaneously hypertensive rats. Chronobiol Int. 1993;10(5):331–7.Google Scholar
  174. 174.
    Hsu CY, Lin F, Vittinghoff E, Shlipak MG. Racial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J Am Soc Nephrol. 2003;14(11):2902–7.Google Scholar
  175. 175.
    Martins D, Tareen N, Norris KC. The epidemiology of end-stage renal disease among African Americans. Am J Med Sci. 2002;323(2):65–71.Google Scholar
  176. 176.
    Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008;8:117.Google Scholar
  177. 177.
    Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380(9841):601–10.Google Scholar
  178. 178.
    Eguchi K, Pickering TG, Hoshide S, Ishikawa J, Ishikawa S, Schwartz JE, et al. Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am J Hypertens. 2008;21(4):443–50.Google Scholar
  179. 179.
    Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341(15):1127–33.Google Scholar
  180. 180.
    Lurbe A, Redon J, Pascual JM, Tacons J, Alvarez V, Batlle DC. Altered blood pressure during sleep in normotensive subjects with type I diabetes. Hypertension. 1993;21(2):227–35.Google Scholar
  181. 181.
    Poulsen PL, Ebbehoj E, Hansen KW, Mogensen CE. 24-h blood pressure and autonomic function is related to albumin excretion within the normoalbuminuric range in IDDM patients. Diabetologia. 1997;40(6):718–25.Google Scholar
  182. 182.
    Voros P, Lengyel Z, Nagy V, Nemeth C, Rosivall L, Kammerer L. Diurnal blood pressure variation and albuminuria in normotensive patients with insulin-dependent diabetes mellitus. Nephrol Dial Transplant. 1998;13(9):2257–60.Google Scholar
  183. 183.
    Hansen HP, Rossing P, Tarnow L, Nielsen FS, Jensen BR, Parving HH. Circadian rhythm of arterial blood pressure and albuminuria in diabetic nephropathy. Kidney Int. 1996;50(2):579–85.Google Scholar
  184. 184.
    Moore WV, Donaldson DL, Chonko AM, Ideus P, Wiegmann TB. Ambulatory blood pressure in type I diabetes mellitus. Comparison to presence of incipient nephropathy in adolescents and young adults. Diabetes. 1992;41(9):1035–41.Google Scholar
  185. 185.
    Pecis M, Azevedo MJ, Moraes RS, Ferlin EL, Gross JL. Autonomic dysfunction and urinary albumin excretion rate are associated with an abnormal blood pressure pattern in normotensive normoalbuminuric type 1 diabetic patients. Diabetes Care. 2000;23(7):989–93.Google Scholar
  186. 186.
    Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.Google Scholar
  187. 187.
    Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369(9557):201–7.Google Scholar
  188. 188.
    Emdin CA, Anderson SG, Woodward M, Rahimi K. Usual blood pressure and risk of new-onset diabetes: evidence from 4.1 million adults and a meta-analysis of prospective studies. J Am Coll Cardiol. 2015;66(14):1552–62.Google Scholar
  189. 189.
    Ayala DE, Moya A, Crespo JJ, Castineira C, Dominguez-Sardina M, Gomara S, et al. Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol Int. 2013;30(1–2):99–115.Google Scholar
  190. 190.
    Sun L, Yan B, Gao Y, Su D, Peng L, Jiao Y, et al. Relationship between blood pressure reverse dipping and type 2 diabetes in hypertensive patients. Sci Rep. 2016;6:25053.Google Scholar
  191. 191.
    • Hermida RC. Sleep-time ambulatory blood pressure as a prognostic marker of vascular and other risks and therapeutic target for prevention by hypertension chronotherapy: rationale and design of the Hygia Project. Chronobiol Int. 2016;33(7):906–36 Methods and rationale for large-scale AMBP trial.Google Scholar
  192. 192.
    Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30(3):202–10.Google Scholar
  193. 193.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update. Circulation. 2013;127(1).Google Scholar
  194. 194.
    Hertz RP, Unger AN, Cornell JA, Saunders E. Racial disparities in hypertension prevalence, awareness, and management. Arch Intern Med. 2005;165(18):2098–104.Google Scholar
  195. 195.
    Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291(17):2107–13.Google Scholar
  196. 196.
    Lackland DT. Racial disparities in hypertension. J Clin Hypertens (Greenwich). 2005;7(9):500–2.Google Scholar
  197. 197.
    Bosworth HB, Powers B, Grubber JM, Thorpe CT, Olsen MK, Orr M, et al. Racial differences in blood pressure control: potential explanatory factors. J Gen Intern Med. 2008;23(5):692–8.Google Scholar
  198. 198.
    Gretler DD, Fumo MT, Nelson KS, Murphy MB. Ethnic differences in circadian hemodynamic profile. Am J Hypertens. 1994;7(1):7–14.Google Scholar
  199. 199.
    Muntner P, Lewis CE, Diaz KM, Carson AP, Kim Y, Calhoun D, et al. Racial differences in abnormal ambulatory blood pressure monitoring measures: results from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Hypertens. 2015;28(5):640–8.Google Scholar
  200. 200.
    Thomas SJ, 3rd Booth JN, Bromfield SG, Seals SR, Spruill TM, Ogedegbe G, et al. Clinic and ambulatory blood pressure in a population-based sample of African Americans: the Jackson Heart Study. J Am Soc Hypertens. 2017;11:204–212.e5.Google Scholar
  201. 201.
    Agyemang C, Bhopal R, Bruijnzeels M, Redekop WK. Does nocturnal blood pressure fall in people of African and south Asian descent differ from that in European white populations? A systematic review and meta-analysis. J Hypertens. 2005;23(5):913–20.Google Scholar
  202. 202.
    Bosworth HB, Dudley T, Olsen MK, Voils CI, Powers B, Goldstein MK, et al. Racial differences in blood pressure control: potential explanatory factors. Am J Med. 2006;119(1):70 e9–15.Google Scholar
  203. 203.
    Lackland DT, Keil JE. Epidemiology of hypertension in African Americans. Semin Nephrol. 1996;16(2):63–70.Google Scholar
  204. 204.
    Howard G, Prineas R, Moy C, Cushman M, Kellum M, Temple E, et al. Racial and geographic differences in awareness, treatment, and control of hypertension: the REasons for Geographic And Racial Differences in Stroke study. Stroke. 2006;37(5):1171–8.Google Scholar
  205. 205.
    Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290(2):199–206.Google Scholar
  206. 206.
    Brancati FL, Kao WH, Folsom AR, Watson RL, Szklo M. Incident type 2 diabetes mellitus in African American and white adults: the Atherosclerosis Risk in Communities Study. JAMA. 2000;283(17):2253–9.Google Scholar
  207. 207.
    Gaskin DJ, Thorpe RJ Jr, McGinty EE, Bower K, Rohde C, Young JH, et al. Disparities in diabetes: the nexus of race, poverty, and place. Am J Public Health. 2014;104(11):2147–55.Google Scholar
  208. 208.
    Freedman BI, Tuttle AB, Spray BJ. Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1995;25(5):710–3.Google Scholar
  209. 209.
    •• Carnethon MR, Pu J, Howard G, Albert MA, Anderson CA, Bertoni AG, et al. Cardiovascular health in African Americans: a scientific statement from the american heart association. Circulation. 2017;136(21):e393–423 Statement from the American Heart Association which encourages broader strategies to reduce cardiovascular health disparities among African Americans. Google Scholar
  210. 210.
    Sardar MR, Badri M, Prince CT, Seltzer J, Kowey PR. Underrepresentation of women, elderly patients, and racial minorities in the randomized trials used for cardiovascular guidelines. JAMA Intern Med. 2014;174(11):1868–70.Google Scholar
  211. 211.
    Melloni C, Berger JS, Wang TY, Gunes F, Stebbins A, Pieper KS, et al. Representation of women in randomized clinical trials of cardiovascular disease prevention. Circ Cardiovasc Qual Outcomes. 2010;3(2):135–42.Google Scholar
  212. 212.
    •• Tamargo J, Rosano G, Walther T, Duarte J, Niessner A, Kaski JC, et al. Gender differences in the effects of cardiovascular drugs. Eur Heart J Cardiovasc Pharmacother. 2017;3(3):163–82 Review that highlights the importance of considering sex-specific differences in pharmacology.Google Scholar
  213. 213.
    Duffy JF, Cain SW, Chang A-M, Phillips AJ, Münch MY, Gronfier C, et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci. 2011;108(Supplement 3):15602–8.Google Scholar
  214. 214.
    Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SBS, Santhi N, et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythm. 2010;25(4):288–96.Google Scholar
  215. 215.
    Rorie DA, Rogers A, Mackenzie IS, Ford I, Webb DJ, Willams B, et al. Methods of a large prospective, randomised, open-label, blinded end-point study comparing morning versus evening dosing in hypertensive patients: the Treatment In Morning versus Evening (TIME) study. BMJ Open. 2016;6(2):e010313.Google Scholar
  216. 216.
    Rorie DA, Flynn RWV, Mackenzie IS, MacDonald TM, Rogers A. The Treatment In Morning versus Evening (TIME) study: analysis of recruitment, follow-up and retention rates post-recruitment. Trials. 2017;18(1):557.Google Scholar
  217. 217.
    Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23(1–2):497–509.Google Scholar
  218. 218.
    Shea SA, Hilton MF, Hu K, Scheer FA. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res. 2011;108(8):980–4.Google Scholar
  219. 219.
    Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A. 2010;107(47):20541–6.Google Scholar
  220. 220.
    Scheer FA, Michelson AD, Frelinger AL 3rd, Evoniuk H, Kelly EE, McCarthy M, et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011;6(9):e24549.Google Scholar
  221. 221.
    Hu K, Scheer FA, Laker M, Smales C, Shea SA. Endogenous circadian rhythm in vasovagal response to head-up tilt. Circulation. 2011;123(9):961–70.Google Scholar
  222. 222.
    Lemmer B. Chronobiology and chronopharmacology of cardiovascular diseases. Wien Med Wochenschr. 1995;145(17–18):445–7.Google Scholar
  223. 223.
    Khodadoustan S, Nasri Ashrafi I, Vanaja Satheesh K, Kumar C, Hs SSC. Evaluation of the effect of time dependent dosing on pharmacokinetic and pharmacodynamics of amlodipine in normotensive and hypertensive human subjects. Clin Exp Hypertens. 2017;39(6):520–6.Google Scholar
  224. 224.
    Luo D, Kim JH, Park C, Oh E, Park JB, Cui JH, et al. Design of fixed dose combination and physicochemical characterization of enteric-coated bilayer tablet with circadian rhythmic variations containing telmisartan and pravastatin sodium. Int J Pharm. 2017;523(1):343–56.Google Scholar
  225. 225.
    • Biswas N, Kuotsu K. Chronotherapeutically modulated pulsatile system of valsartan nanocrystals—an in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(2):349–57 Methods on the improved bioengineering of antihypertensive medication to increase bioavailalilty based on naturalistic patterns in blood pressure spikes. Google Scholar
  226. 226.
    • Newton AM, Indana VL, Kumar J. Chronotherapeutic drug delivery of tamarind gum, chitosan and okra gum controlled release colon targeted directly compressed propranolol HCl matrix tablets and in-vitro evaluation. Int J Biol Macromol. 2015;79:290–9 Methods on the improved bioengineering of antihypertensive medication to increase bioavailalilty based on naturalistic patterns in blood pressure spikes. Google Scholar
  227. 227.
    Gangane P, Mahajan N, Danao K, Pawde G. Formulation and evaluation of chronomodulated pulsatile therapeutic system of early morning surge in blood pressure. Int J Pharm Pharm Sci. 2015;7(6):337–41.Google Scholar
  228. 228.
    Gradman AH, Basile JN, Carter BL, Bakris GL. Combination therapy in hypertension. J Am Soc Hypertens. 2010;4(1):42–50.Google Scholar
  229. 229.
    Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med. 2009;122(3):290–300.Google Scholar
  230. 230.
    Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin–angiotensin system on proteinuria in renal disease. Ann Intern Med. 2008;148(1):30–48.Google Scholar
  231. 231.
    Ferrari P, Marti H-P, Pfister M, Frey FJ. Additive antiproteinuric effect of combined ACE inhibition and angiotensin II receptor blockade. J Hypertens. 2002;20(1):125–30.Google Scholar
  232. 232.
    Villamil A, Chrysant SG, Calhoun D, Schober B, Hsu H, Matrisciano-Dimichino L, et al. Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide. J Hypertens. 2007;25(1):217–26.Google Scholar
  233. 233.
    Fabia MJ, Abdilla N, Oltra R, Fernandez C, Redon J. Antihypertensive activity of angiotensin II AT1 receptor antagonists: a systematic review of studies with 24 h ambulatory blood pressure monitoring. J Hypertens. 2007;25(7):1327–36.Google Scholar
  234. 234.
    Cooney D, Pascuzzi K. Polypharmacy in the elderly: focus on drug interactions and adherence in hypertension. Clin Geriatr Med. 2009;25(2):221–33.Google Scholar
  235. 235.
    Association AD. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37(Supplement 1):S14–80.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. P. Bowles
    • 1
  • S. S. Thosar
    • 1
  • M. X. Herzig
    • 1
  • S. A. Shea
    • 1
  1. 1.Oregon Institute of Occupational Health SciencesOregon Health and Sciences UniversityPortlandUSA

Personalised recommendations