Advertisement

Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension

  • Alexandre Vallée
  • Bernard L. Lévy
  • Jacques Blacher
Implementation to Increase Blood Pressure Control: What Works? (J Brettler and K Reynolds, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Implementation to Increase Blood Pressure Control: What Works?

Abstract

Purpose of Review

Heterogeneous causes can determinate hypertension.

Recent Findings

The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS.

Summary

We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.

Keywords

Hypertension Renin-angiotensin system Canonical WNT/β-catenin pathway PPARγ 

Abbreviations

ACE

angiotensin converting enzyme

APC

adenomatous polyposis

Ang

angiotensin

AGT

angiotensinogen: AP-1: nuclear transcription factor activator protein 1

AT1R

angiotensin 1 receptor

COX2

cyclooxygenase 2

DSH

Disheveled

FZD

Frizzled

GSK-3β

glycogen synthase kinase 3

LRP 5/6

LDL receptor-related proteins 5 and 6

MI

myocardial ischemia

NF-ϰB

nuclear transcription factor kappaB

NOX

NADPH oxidase

PPARγ

peroxisome proliferator-activated receptor gamma

PRR

pro-renin receptor

TNF

tumor necrosis factor

RAS

renin-angiotensin system

ROS

reactive oxygen species

WNT

Wingless Int.`

Notes

Author Contributions

All authors listed have made contribution to the work and approved it for publication.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet Lond. Engl. 2005;365:217–23.Google Scholar
  2. 2.
    Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJC. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertens. Dallas Tex 1979. 2005;45:80–5.Google Scholar
  3. 3.
    Materson BJ, Reda DJ, Cushman WC, Massie BM, Freis ED, Kochar MS, et al. Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N. Engl. J. Med. 1993;328:914–21.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Trimarco B, Santoro C, Pepe M, Galderisi M. The benefit of angiotensin AT1 receptor blockers for early treatment of hypertensive patients. Intern. Emerg. Med. 2017;12:1093–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zicha J, Dobešová Z, Behuliak M, Pintérová M, Kuneš J, Vaněčková I. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system. Physiol. Res. 2014;63:13–26.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 2007;59:251–87.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Takeda K, Ichiki T, Funakoshi Y, Ito K, Takeshita A. Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertens. Dallas Tex 1979. 2000;35:297–302.Google Scholar
  8. 8.
    Sugiyama F, Haraoka S, Watanabe T, Shiota N, Taniguchi K, Ueno Y, et al. Acceleration of atherosclerotic lesions in transgenic mice with hypertension by the activated renin-angiotensin system. Lab Investig. J. Tech. Methods Pathol. 1997;76:835–42.Google Scholar
  9. 9.
    •• Lecarpentier Y, Claes V, Duthoit G, Hébert J-L. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front. Physiol. 2014;5:429. For the understanding of this crosstalk in cardiovascular diseases. PubMedPubMedCentralGoogle Scholar
  10. 10.
    •• Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis. 2017;262:171–8. The role of WNT pathway and pulse pressure. PubMedPubMedCentralGoogle Scholar
  11. 11.
    •• Chandra M, Miriyala S, Panchatcharam M. PPARγ and its role in cardiovascular diseases. PPAR Res. 2017;2017:6404638. The role of PPAR gamma agonists in cardiovascular diseases. PubMedPubMedCentralGoogle Scholar
  12. 12.
    Usuda D, Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J. Cardiol. 2014;6:744–54.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. JASN. 2015;26:107–20.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yu Y, Zhang Z-H, Wei S-G, Weiss RM, Felder RB. Peroxisome proliferator-activated receptor-γ regulates inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorates peripheral manifestations of heart failure. Hypertens. Dallas Tex 1979. 2012;59:477–84.Google Scholar
  15. 15.
    Liu J, Wang H, Zuo Y, Farmer SR. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol. Cell. Biol. 2006;26:5827–37.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Moldes M, Zuo Y, Morrison RF, Silva D, Park B-H, Liu J, et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem. J. 2003;376:607–13.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J. Biol. Chem. 2004;279:35583–94.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rodrigues-Ferreira S, Nahmias C. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer? Front. Pharmacol. 2015;6:24.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Majzunova M, Dovinova I, Barancik M, Chan JYH. Redox signaling in pathophysiology of hypertension. J. Biomed. Sci. 2013;20:69.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Crowley SD, Coffman TM. Recent advances involving the renin-angiotensin system. Exp. Cell Res. 2012;318:1049–56.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fleming I, Kohlstedt K, Busse R. New fACEs to the renin-angiotensin system. Physiol. Bethesda Md. 2005;20:91–5.Google Scholar
  22. 22.
    Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J. Endocrinol. 2013;216:R1–17.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Iwai M, Nakaoka H, Senba I, Kanno H, Moritani T, Horiuchi M. Possible involvement of angiotensin-converting enzyme 2 and Mas activation in inhibitory effects of angiotensin II Type 1 receptor blockade on vascular remodeling. Hypertens. Dallas Tex 1979. 2012;60:137–44.Google Scholar
  24. 24.
    Moraes PL, Kangussu LM, Castro CH, Santos RA, Ferreira AJ, Almeida AP. Vasodilator effect of Angiotensin- (1-7) on vascular coronary bed of rats: Role of Mas, ACE and ACE2. Protein Pept. Lett. 2017.Google Scholar
  25. 25.
    Buchanan TA, Meehan WP, Jeng YY, Yang D, Chan TM, Nadler JL, et al. Blood pressure lowering by pioglitazone. evidence for a direct vascular effect. J. Clin. Invest. 1995;96:354–60.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Touyz RM, Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertens. Dallas Tex 1979. 1999;34:976–82.Google Scholar
  27. 27.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 2000;87:840–4.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertens. Dallas Tex 1979. 2003;42:1075–81.Google Scholar
  29. 29.
    Zhao R, Ma X, Xie X, Shen GX. Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2009;297:E104–11.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gulati P, Klöhn PC, Krug H, Göttlicher M, Markova B, Böhmer FD, et al. Redox regulation in mammalian signal transduction. IUBMB Life. 2001;52:25–8.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lacy F, O’Connor DT, Schmid-Schönbein GW. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J. Hypertens. 1998;16:291–303.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, et al. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertens. Dallas Tex 1979. 2003;41:1096–101.Google Scholar
  33. 33.
    San José G, Fortuño A, Moreno MU, Robador PA, Bidegain J, Varo N, et al. The angiotensin-converting enzyme insertion/deletion polymorphism is associated with phagocytic NADPH oxidase-dependent superoxide generation: potential implication in hypertension. Clin. Sci. Lond. Engl. 1979. 2009;116:233–40.Google Scholar
  34. 34.
    Tian N, Moore RS, Braddy S, Rose RA. Gu J-W, Hughson MD, et al. Interactions between oxidative stress and inflammation in salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H3388–95.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol. Rev. 2017;97:1127–64.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol. Res. 2017;120:88–96.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. Lond. Engl. 1979. 2012;122:535–43.Google Scholar
  38. 38.
    Vanegas V, Ferrebuz A, Quiroz Y, Rodríguez-Iturbe B. Hypertension in Page (cellophane-wrapped) kidney is due to interstitial nephritis. Kidney Int. 2005;68:1161–70.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Nguyen G, Contrepas A. Physiology and pharmacology of the (pro)renin receptor. Curr. Opin. Pharmacol. 2008;8:127–32.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nguyen G, Muller DN. The biology of the (pro)renin receptor. J. Am. Soc. Nephrol. JASN. 2010;21:18–23.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer J-D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 2002;109:1417–27.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal Angiotensin status in hypertension. Hypertens. Dallas Tex 1979. 2003;41:42–9.Google Scholar
  43. 43.
    Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertens. Dallas Tex 1979. 2004;43:1126–32.Google Scholar
  44. 44.
    Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64:231.PubMedPubMedCentralGoogle Scholar
  45. 45.
    MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell. 2009;17:9–26.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Nusse R, Wnt CH. β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–99.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Nusse R. Wnt signaling. Cold Spring Harb. Perspect. Biol. 2012;4.PubMedPubMedCentralGoogle Scholar
  48. 48.
    He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Dev. Camb. Engl. 2004;131:1663–77.Google Scholar
  49. 49.
    Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 1997;16:3797–804.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Clevers H, Wnt NR. β-catenin signaling and disease. Cell. 2012;149:1192–205.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, et al. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab. 2013;17:197–209.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang S, Song K, Srivastava R, Dong C, Go G-W, Li N, et al. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015;29:3436–45.Google Scholar
  54. 54.
    Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 2011;43:1005–11.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sarzani R, Salvi F, Bordicchia M, Guerra F, Battistoni I, Pagliariccio G, et al. Carotid artery atherosclerosis in hypertensive patients with a functional LDL receptor-related protein 6 gene variant. Nutr. Metab. Cardiovasc. Dis. NMCD. 2011;21:150–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Delgado-Lista J, Perez-Martinez P, García-Rios A, Phillips CM, Williams CM, Gulseth HL, et al. Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome: from the LIPGENE study. Atherosclerosis. 2011;214:110–6.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Al-Aly Z. Arterial calcification: a tumor necrosis factor-alpha mediated vascular Wnt-opathy. Transl. Res. J. Lab. Clin. Med. 2008;151:233–9.Google Scholar
  58. 58.
    Halt K, Vainio S. Coordination of kidney organogenesis by Wnt signaling. Pediatr. Nephrol. Berl. Ger. 2014;29:737–44.Google Scholar
  59. 59.
    Bhandaru M, Kempe DS, Rotte A, Rexhepaj R, Kuhl D, Lang F. Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R571–5.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Just A. Going with the Wnt? Focus on “Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC.”. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R568–70.PubMedPubMedCentralGoogle Scholar
  61. 61.
    • Yu J. Wnt signaling and renal medulla formation. Pediatr. Nephrol. Berl. Ger. 2011;26:1553–7. Interaction between WNT pathway and the renin angiotensin system. Google Scholar
  62. 62.
    Cuevas CA, Gonzalez AA, Inestrosa NC, Vio CP, Prieto MC, Angiotensin II. increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. Am. J. Physiol. Renal Physiol. 2015;308:F358–65.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Hao S, He W, Li Y, Ding H, Hou Y, Nie J, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. JASN. 2011;22:1642–53.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Henderson WR, Chi EY, Ye X, Nguyen C, Tien Y, Zhou B, et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl. Acad. Sci. U. S. A. 2010;107:14309–14.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Cruciat C-M, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327:459–63.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Nguyen G. Renin, (pro)renin and receptor: an update. Clin. Sci. Lond. Engl. 1979. 2011;120:169–78.Google Scholar
  67. 67.
    Yang T, Xu C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J. Am. Soc. Nephrol. JASN. 2017;28:1040–9.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hermle T, Saltukoglu D, Grünewald J, Walz G, Simons M. Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr. Biol. CB. 2010;20:1269–76.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hirose T, Hashimoto M, Totsune K, Metoki H, Asayama K, Kikuya M, et al. Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am. J. Hypertens. 2009;22:294–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Ott C, Schneider MP, Delles C, Schlaich MP, Hilgers KF, Schmieder RE. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet. Genomics. 2011;21:347–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Song R, Preston G, Kidd L, Bushnell D, Sims-Lucas S, Bates CM, et al. Prorenin receptor is critical for nephron progenitors. Dev. Biol. 2016;409:382–91.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Dev. Camb. Engl. 2011;138:1247–57.Google Scholar
  73. 73.
    Park J-S, Ma W, O’Brien LL, Chung E, Guo J-J, Cheng J-G, et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev. Cell. 2012;23:637–51.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Sumida T, Naito AT, Nomura S, Nakagawa A, Higo T, Hashimoto A, et al. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling. Nat. Commun. 2015;6:6241.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Pauletto P, Sarzani R, Rappelli A, Chiavegato A, Pessina AC, Sartore S. Differentiation and growth of vascular smooth muscle cells in experimental hypertension. Am. J. Hypertens. 1994;7:661–74.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J. Hum. Hypertens. 2014;28:510–6.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc. Res. 2012;95:233–40.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, et al. Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ. Res. 2011;108:427–36.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789–99.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 2006;58:726–41.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Abbas A, Blandon J, Rude J, Elfar A, Mukherjee D. PPAR- γ agonist in treatment of diabetes: cardiovascular safety considerations. Cardiovasc. Hematol. Agents Med. Chem. 2012;10:124–34.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Oyekan A. PPARs and their effects on the cardiovascular system. Clin. Exp. Hypertens. N. Y. N 1993. 2011;33:287–93.Google Scholar
  83. 83.
    Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J. Clin. Invest. 1997;100:3149–53.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ. Res. 1998;83:1097–103.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation. 2002;105:1240–6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Chen R, Liang F, Moriya J, Yamakawa J, Takahashi T, Shen L, et al. Peroxisome proliferator-activated receptors (PPARs) and their agonists for hypertension and heart failure: are the reagents beneficial or harmful? Int. J. Cardiol. 2008;130:131–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Polvani S, Tarocchi M, Galli A. PPARγ and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res. 2012;2012:641087.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Tain Y-L, Hsu C-N, JYH Chan. PPARs Link early life nutritional insults to later programmed hypertension and metabolic syndrome. Int. J. Mol. Sci. 2015;17.Google Scholar
  90. 90.
    Touyz RM, Schiffrin EL. Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vascul. Pharmacol. 2006;45:19–28.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM, Oxidized LDL. regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.PubMedPubMedCentralGoogle Scholar
  92. 92.
    McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc. Natl. Acad. Sci. U. S. A. 2003;100:131–6.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Duan SZ, Usher MG, Mortensen RM. PPARs: the vasculature, inflammation and hypertension. Curr. Opin. Nephrol. Hypertens. 2009;18:128–33.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J. Allergy Clin. Immunol. 2013;132:264–86.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Chen X, Bing Z, He J, Jiang L, Luo X, Su Y, et al. Downregulation of peroxisome proliferator-activated receptor-gamma expression in hypertensive atrial fibrillation. Clin. Cardiol. 2009;32:337–45.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhang L, Xie P, Wang J, Yang Q, Fang C, Zhou S, et al. Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension. J. Biol. Chem. 2010;285:13666–77.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhong J-C, Ye J-Y, Jin H-Y, Yu X, Yu H-M, Zhu D-L, et al. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regul. Pept. 2011;166:90–7.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care. 2003;26:172–8.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Shargorodsky M, Wainstein J, Gavish D, Leibovitz E, Matas Z, Zimlichman R, et al. Treatment with rosiglitazone reduces hyperinsulinemia and improves arterial elasticity in patients with type 2 diabetes mellitus. Am. J. Hypertens. 2003;16:617–22.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab. 2008;8:482–91.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Anan F, Masaki T, Fukunaga N, Teshima Y, Iwao T, Kaneda K, et al. Pioglitazone shift circadian rhythm of blood pressure from non-dipper to dipper type in type 2 diabetes mellitus. Eur. J. Clin. Invest. 2007;37:709–14.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Katsi V, Georgiopoulos G, Vogiatzi G, Oikonomou D, Megapanou M, Skoumas J, et al. Effects of oral and non-insulin injectable antidiabetic treatment in hypertension: a systematic review. Curr. Pharm. Des. 2017;23:3743–50.PubMedPubMedCentralGoogle Scholar
  103. 103.
    • Stump M, Mukohda M, Hu C, Sigmund CD. PPARγ regulation in hypertension and metabolic syndrome. Curr. Hypertens. Rep. 2015;17:89. PPAR gamma ragulation during hypertension. PubMedPubMedCentralGoogle Scholar
  104. 104.
    Dobrian AD, Schriver SD, Khraibi AA, Prewitt RL. Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertens. Dallas Tex 1979. 2004;43:48–56.Google Scholar
  105. 105.
    Nakamoto M, Ohya Y, Shinzato T, Mano R, Yamazato M, Sakima A, et al. Pioglitazone, a thiazolidinedione derivative, attenuates left ventricular hypertrophy and fibrosis in salt-sensitive hypertension. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2008;31:353–61.Google Scholar
  106. 106.
    Dovinová I, Barancik M, Majzunova M, Zorad S, Gajdosechová L, Gresová L, et al. Effects of PPAR γ agonist pioglitazone on redox-sensitive cellular signaling in young spontaneously hypertensive rats. PPAR Res. 2013;2013:541871.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Dorafshar AH, Moodley K, Khoe M, Lyon C, Bryer-Ash M. Pioglitazone improves superoxide dismutase mediated vascular reactivity in the obese Zucker rat. Diab. Vasc. Dis. Res. 2010;7:20–7.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Schöndorf T, Forst T, Hohberg C, Pahler S, Link C, Roth W, et al. The IRIS III study: pioglitazone improves metabolic control and blood pressure in patients with type 2 diabetes without increasing body weight. Diabetes Obes. Metab. 2007;9:132–3.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Derosa G, Fogari E, Cicero AFG, D’Angelo A, Ciccarelli L, Piccinni MN, et al. Blood pressure control and inflammatory markers in type 2 diabetic patients treated with pioglitazone or rosiglitazone and metformin. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2007;30:387–94.Google Scholar
  110. 110.
    Abe M, Okada K, Kikuchi F, Matsumoto K. Clinical investigation of the effects of pioglitazone on the improvement of insulin resistance and blood pressure in type 2-diabetic patients undergoing hemodialysis. Clin. Nephrol. 2008;70:220–8.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Yki-Järvinen H. Thiazolidinediones. N. Engl. J. Med. 2004;351:1106–18.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–54.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007;356:2457–71.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, et al. Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. N. Engl. J. Med. 2007;357:28–38.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet Lond Engl. 2009;373:2125–2135.Google Scholar
  116. 116.
    Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglit azone clinical trial in macro vascular events): a randomised controlled trial. Lancet Lond Engl. 2005;366:1279–89.Google Scholar
  117. 117.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am. J. Cardiovasc. Drugs Drugs Devices Interv. 2011;11:115–28.Google Scholar
  119. 119.
    DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet Lond Engl. 2006;368:1096–1105.Google Scholar
  120. 120.
    Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc. Diabetol. 2017;16:18.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18. 2016:891–975.Google Scholar
  122. 122.
    Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol. Ther. 2016;168:75–97.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Horita S, Nakamura M, Satoh N, Suzuki M, Seki G. Thiazolidinediones and edema: recent advances in the pathogenesis of thiazolidinediones-induced renal sodium retention. PPAR Res. 2015;2015:646423.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27:256–63.PubMedPubMedCentralGoogle Scholar
  125. 125.
    De Paoli AM, Higgins LS, Henry RR, Mantzoros C, Dunn FL, INT131-007 Study Group. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care. 2014;37:1918–23.Google Scholar
  126. 126.
    Lecarpentier Y, Claes V, Vallée A, Hébert J-L. Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin. Transl. Med. 2017;6:14.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Vallée A, Lecarpentier Y, Guillevin R, Thermodynamics in Gliomas VJ-N. Interactions between the canonical WNT/beta-catenin pathway and PPAR gamma. Front. Physiol. 2017;8:352.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Vallée A, Guillevin R, Vallée J-N. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci. 2017.Google Scholar
  129. 129.
    Lecarpentier Y, Claes V, Vallée A, Hébert J-L. Interactions between PPAR gamma and the canonical Wnt/Beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res. 2017;2017:1–9.Google Scholar
  130. 130.
    Vallée A, Lecarpentier Y, Vallée J-N. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int. J. Mol. Sci. 2017;18Google Scholar
  131. 131.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Lecarpentier Y, Schussler O, Claes V, Vallée A. The myofibroblast: TGFβ-1, A conductor which plays a key role in fibrosis by regulating the balance between PPARγ and the canonical WNT pathway. Nuclear Receptor Research. 2017;4:23.Google Scholar
  133. 133.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Effects of Cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin 2017;1–14.Google Scholar
  134. 134.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci. 2017.Google Scholar
  135. 135.
    Vallée A, Alzheimer Disease LY. Crosstalk between the canonical Wnt/Beta-catenin pathway and PPARs alpha and gamma. Front. Neurosci. 2016;10:459.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J. Mol. Neurosci. MN. 2017;62:368–79.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. PPARγ agonists: potential treatments for exudative age-related macular degeneration. Life Sci. 2017.Google Scholar
  138. 138.
    Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and canonical Wnt/Beta-Catenin pathway in amyotrophic lateral sclerosis. Front. Neurol. 2016;7:100.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Vallée A, Vallée J-N, Guillevin R, Lecarpentier Y. Interactions between the canonical WNT/Beta-catenin pathway and PPAR gamma on neuroinflammation, demyelination, and remyelination in multiple sclerosis. Cell Mol Neurobiol 2017.Google Scholar
  140. 140.
    Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 2006;116:2012–21.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Lecarpentier Y, Claes V, Hébert J-L. PPARs, cardiovascular metabolism, and function: near- or far-from-equilibrium pathways. PPAR Res. 2010;2010Google Scholar
  142. 142.
    Belanger AJ, Lu H, Date T, Liu LX, Vincent KA, Akita GY, et al. Hypoxia up-regulates expression of peroxisome proliferator-activated receptor gamma angiopoietin-related gene (PGAR) in cardiomyocytes: role of hypoxia inducible factor 1alpha. J. Mol. Cell. Cardiol. 2002;34:765–74.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S. Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocr. J. 2010;57:847–52.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn WM, Hall JLA. role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ. Res. 2002;90:340–7.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Ajmone-Cat MA, D’Urso MC, di Blasio G, Brignone MS, De Simone R, Minghetti L. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain. Behav. Immun. 2016;55:225–235.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Jansson EA, Are A, Greicius G, Kuo I-C, Kelly D, Arulampalam V, et al. The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2005;102:1460–5.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Drygiannakis I, Valatas V, Sfakianaki O, Bourikas L, Manousou P, Kambas K, et al. Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J. Crohns Colitis. 2013;7:286–300.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Farmer SR. Regulation of PPARgamma activity during adipogenesis. Int. J. Obes. 2005. 2005;29(Suppl 1):S13–6.Google Scholar
  149. 149.
    Jeon K-I, Kulkarni A, Woeller CF, Phipps RP, Sime PJ, Hindman HB, et al. Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am. J. Pathol. 2014;184:1429–45.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Kumar V, Mundra V, Mahato RI. Nanomedicines of Hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm. Res. 2014;31:1158–69.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell. Mol. Life Sci. CMLS. 2013;70:3959–71.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Li Q, Yan Z, Li F, Lu W, Wang J, Guo C. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells. Nanotechnology. 2012;23:265101.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Liu J, Farmer SR. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 2004;279:45020–7.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Qian J, Niu M, Zhai X, Zhou Q, Zhou Y. β-Catenin pathway is required for TGF-β1 inhibition of PPARγ expression in cultured hepatic stellate cells. Pharmacol. Res. 2012;66:219–25.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Segel MJ, Izbicki G, Cohen PY, Or R, Christensen TG, Wallach-Dayan SB, et al. Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003;285:L1255–62.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Shim CY, Song B-W, Cha M-J, Hwang K-C, Park S, Hong G-R, et al. Combination of a peroxisome proliferator-activated receptor-gamma agonist and an angiotensin II receptor blocker attenuates myocardial fibrosis and dysfunction in type 2 diabetic rats. J. Diabetes Investig. 2014;5:362–71.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 2009;5:442–7.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Lu D, Carson DA. Repression of beta-catenin signaling by PPAR gamma ligands. Eur. J. Pharmacol. 2010;636:198–202.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M d, Moller DE, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem. Biophys. Res. Commun. 1996;224:431–437.Google Scholar
  160. 160.
    Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J. Biol. Chem. 1997;272:18779–89.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Akinyeke TO, Stewart LV. Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARγ-independent mechanism. Cancer Biol. Ther. 2011;11:1046–58.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Gustafson B, Eliasson B, Smith U. Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia. 2010;53:536–40.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Jeon M, Rahman N, Wnt KY-S. β-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem. Biophys. Res. Commun. 2016;479:22–7.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, et al. COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 2009;106:5819–24.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Simon MF, Daviaud D, Pradère JP, Grès S, Guigné C, Wabitsch M, et al. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J. Biol. Chem. 2005;280:14656–62.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Tan JTM, McLennan SV, Song WW, Lo LW-Y, Bonner JG, Williams PF, et al. Connective tissue growth factor inhibits adipocyte differentiation. Am. J. Physiol. Cell Physiol. 2008;295:C740–51.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Yamasaki S, Nakashima T, Kawakami A, Miyashita T, Tanaka F, Ida H, et al. Cytokines regulate fibroblast-like synovial cell differentiation to adipocyte-like cells. Rheumatol. Oxf. Engl. 2004;43:448–52.Google Scholar
  168. 168.
    Nicol CJ, Adachi M, Akiyama TE, Gonzalez FJ. PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am. J. Hypertens. 2005;18:549–56.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Todorov VT, Desch M, Schmitt-Nilson N, Todorova A, Kurtz A. Peroxisome proliferator-activated receptor-gamma is involved in the control of renin gene expression. Hypertens. Dallas Tex 1979. 2007;50:939–44.Google Scholar
  170. 170.
    Roszer T, Ricote M. PPARs in the renal regulation of systemic blood pressure. PPAR Res. 2010;2010:698730.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Efrati S, Berman S, Ilgiyeav E, Averbukh Z, Weissgarten J. PPAR-gamma activation inhibits angiotensin II synthesis, apoptosis, and proliferation of mesangial cells from spontaneously hypertensive rats. Nephron Exp. Nephrol. 2007;106:e107–12.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Song J, Liu H, Ressom HW, Tiwari S, Ecelbarger CM. Chronic rosiglitazone therapy normalizes expression of ACE1, SCD1 and other genes in the kidney of obese Zucker rats as determined by microarray analysis. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2008;116:315–25.Google Scholar
  173. 173.
    Unger T, Stoppelhaar M. Rationale for double renin-angiotensin-aldosterone system blockade. Am. J. Cardiol. 2007;100:25J–31J.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Sanchez RA, Masnatta LD, Pesiney C, Fischer P, Ramirez AJ. Telmisartan improves insulin resistance in high renin nonmodulating salt-sensitive hypertensives. J. Hypertens. 2008;26:2393–8.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Tagami T, Yamamoto H, Moriyama K, Sawai K, Usui T, Shimatsu A, et al. A selective peroxisome proliferator-activated receptor-gamma modulator, telmisartan, binds to the receptor in a different fashion from thiazolidinediones. Endocrinology. 2009;150:862–70.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Takai S, Jin D, Kimura M, Kirimura K, Sakonjo H, Tanaka K, et al. Inhibition of vascular angiotensin-converting enzyme by telmisartan via the peroxisome proliferator-activated receptor gamma agonistic property in rats. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2007;30:1231–7.Google Scholar
  177. 177.
    Imayama I, Ichiki T, Inanaga K, Ohtsubo H, Fukuyama K, Ono H, et al. Telmisartan downregulates angiotensin II type 1 receptor through activation of peroxisome proliferator-activated receptor gamma. Cardiovasc. Res. 2006;72:184–90.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Kobayashi N, Ohno T, Yoshida K, Fukushima H, Mamada Y, Nomura M, et al. Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 2008;21:576–81.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Cernecka H, Doka G, Srankova J, Pivackova L, Malikova E, Galkova K, et al. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. Eur. J. Pharmacol. 2016;791:244–53.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Zhang Z-Z, Shang Q-H, Jin H-Y, Song B, Oudit GY, Lu L, et al. Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice. J. Transl. Med. 2013;11:229.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Yu Y, Xue B-J, Wei S-G, Zhang Z-H, Beltz TG, Guo F, et al. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension. Hypertens. Dallas Tex 1979. 2015;66:403–11.Google Scholar
  182. 182.
    Liu X, Luo D, Zheng M, Hao Y, Hou L, Zhang S. Effect of pioglitazone on insulin resistance in fructose-drinking rats correlates with AGEs/RAGE inhibition and block of NADPH oxidase and NF kappa B activation. Eur. J. Pharmacol. 2010;629:153–8.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Chan SHH, Wu KLH, Kung PSS, JYH C. Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertens. Dallas Tex 1979. 2010;55:1444–53.Google Scholar
  184. 184.
    Genolet R, Wahli W, Michalik LPPAR. as drug targets to modulate inflammatory responses? Curr. Drug Targets Inflamm. Allergy. 2004;3:361–75.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Chinetti G, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2003;27(Suppl 3):S41–5.Google Scholar
  186. 186.
    Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H1037–43.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Martín A, Pérez-Girón JV, Hernanz R, Palacios R, Briones AM, Fortuño A, et al. Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J. Hypertens. 2012;30:315–26.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Pérez-Girón JV, Palacios R, Martín A, Hernanz R, Aguado A, Martínez-Revelles S, et al. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2014;306:H1582–93.PubMedPubMedCentralGoogle Scholar
  189. 189.
    • Hamblin M, Chang L, Zhang J, Chen YE. The role of peroxisome proliferator-activated receptor gamma in blood pressure regulation. Curr. Hypertens. Rep. 2009;11:239–45. PPAR gamma ragulation during hypertension. PubMedPubMedCentralGoogle Scholar
  190. 190.
    Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 2006;70:1223–33.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN. How safe is the use of thiazolidinediones in clinical practice? Expert Opin. Drug Saf. 2009;8:15–32.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Namikoshi T, Tomita N, Satoh M, Haruna Y, Kobayashi S, Komai N, et al. Pioglitazone enhances the antihypertensive and renoprotective effects of candesartan in Zucker obese rats fed a high-protein diet. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2008;31:745–55.Google Scholar
  193. 193.
    Wei S-G, Yu Y, Zhang Z-H, Felder RB. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertens. Dallas Tex 1979. 2015;65:1126–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre Vallée
    • 1
  • Bernard L. Lévy
    • 2
    • 3
  • Jacques Blacher
    • 1
  1. 1.Paris-Descartes University; Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention UnitHôtel-Dieu Hospital; AP-HPParisFrance
  2. 2.Vessels and Blood InstituteLariboisière University HospitalParisFrance
  3. 3.INSERM U970, Paris Cardiovascular Research Centre (PARCC)ParisFrance

Personalised recommendations