Sex-Specific Contributions of Endothelin to Hypertension

  • Eman Y. Gohar
  • David M. PollockEmail author
Preeclampsia (V Garovic, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Preeclampsia


Purpose of Review

Men and women differ in the prevalence, pathophysiology and control rate of hypertension in an age-dependent manner. The renal endothelin system plays a central role in sex differences in blood pressure regulation by control of sodium excretion and vascular function. Improving our understanding of the sex differences in the endothelin system, especially in regard to blood pressure regulation and sodium homeostasis, will fill a significant gap in our knowledge and may identify sex-specific therapeutic targets for management of hypertension.

Recent Findings

The current review will highlight evidence for the potential role for endothelin system in the pathophysiology of hypertension within three female populations: (i) postmenopausal women, (ii) women suffering from preeclampsia, or (iii) pulmonary arterial hypertension.


Clinical trials that specifically address cardiovascular and renal diseases in females under different hormonal status are limited. Studies of the modulatory role of gonadal hormones and sex-specific mechanisms on critically important systems involved, such as endothelin, are needed to establish new clinical practice guidelines based on systematic evidence.


Sex-specific Endothelin Postmenopausal Preeclampsia Pulmonary hypertension 



This work was supported by grants from the National Heart Lung and Blood Institute (P01 HL0699499 and P01 HL136267), an American Heart Association Strategically Focused Research Network Grant on Hypertension, and a UAB School of Medicine AMC21 Multi-Investigator Planning Grant.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340(23):1801–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Granger JP, Abram S, Stec D, Chandler D, Speed J, LaMarca B. Endothelin, the kidney, and hypertension. Curr Hypertens Rep. 2006;8(4):298–303.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, et al. Endothelin. Pharmacol Rev. 2016;68(2):357–418.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Levin ER. Endothelins. N Engl J Med. 1995;333(6):356–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2(4):2393–442.PubMedGoogle Scholar
  7. 7.
    Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68(3):e7–e46.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Pollock DM, Pollock JS. Evidence for endothelin involvement in the response to high salt. Am J Physiol Renal Physiol. 2001;281(1):F144–50.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Speed JS, D'Angelo G, Wach PA, Sullivan JC, Pollock JS, Pollock DM. High salt diet increases the pressor response to stress in female, but not male ETB-receptor-deficient rats. Physiol Rep. 2015;3(3):e12326.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–31.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Gohar EY, Giachini FR, Pollock DM, Tostes RC. Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci. 2016;159:20–9.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kohan DE, Cleland JG, Rubin LJ, Theodorescu D, Barton M. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? Life Sci. 2012;91(13–14):528–39.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Schulman IH, Aranda P, Raij L, Veronesi M, Aranda FJ, Martin R. Surgical menopause increases salt sensitivity of blood pressure. Hypertension. 2006;47(6):1168–74.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Wassertheil-Smoller S, Anderson G, Psaty BM, Black HR, Manson J, Wong N, et al. Hypertension and its treatment in postmenopausal women: baseline data from the Women’s Health Initiative. Hypertension. 2000;36(5):780–9.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and nutrition examination survey, 1988–1991. Hypertension. 1995;25(3):305–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Khalil RA. Sex hormones as potential modulators of vascular function in hypertension. Hypertension. 2005;46(2):249–54.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Reckelhoff JF. Sex steroids, cardiovascular disease, and hypertension: unanswered questions and some speculations. Hypertension. 2005;45(2):170–4.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Tremollieres FA, et al. Coronary heart disease risk factors and menopause: a study in 1684 French women. Atherosclerosis. 1999;142(2):415–23.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290(2):199–206.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JK, Alley D, Seeman T, Karlamangla A, Crimmins E. Recent changes in cardiovascular risk factors among women and men. J Women's Health (Larchmt). 2006;15(6):734–46.CrossRefGoogle Scholar
  21. 21.
    Wilcox JG, Hatch IE, Gentzschein E, Stanczyk FZ, Lobo RA. Endothelin levels decrease after oral and nonoral estrogen in postmenopausal women with increased cardiovascular risk factors. Fertil Steril. 1997;67(2):273–7.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Komatsumoto S, Nara M. Changes in the level of endothelin-1 with aging. Nihon Ronen Igakkai Zasshi. 1995;32(10):664–9.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Saltevo J, Puolakka J, Ylikorkala O. Plasma endothelin in postmenopausal women with type 2 diabetes mellitus and metabolic syndrome: a comparison of oral combined and transdermal oestrogen-only replacement therapy. Diabetes Obes Metab. 2000;2(5):293–8.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Son WM, Sung KD, Cho JM, Park SY. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause. 2017;24(3):262–8.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Webb CM, Ghatei MA, McNeill JG, DCRR, Collins P. 17beta-estradiol decreases endothelin-1 levels in the coronary circulation of postmenopausal women with coronary artery disease. Circulation. 2000;102(14):1617–22.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Wenner MM, Sebzda KN, Kuczmarski AV, Pohlig RT, Edwards DG. ETB receptor contribution to vascular dysfunction in postmenopausal women. Am J Physiol Regul Integr Comp Physiol. 2017;313(1):R51–7.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Gohar EY, Yusuf C, Pollock DM. Ovarian hormones modulate endothelin A and B receptor expression. Life Sci. 2016;159:148–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Kitamura K, Tanaka T, Kato J, Eto T, Tanaka K. Regional distribution of immunoreactive endothelin in porcine tissue: abundance in inner medulla of kidney. Biochem Biophys Res Commun. 1989;161(1):348–52.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Gohar EY, Kasztan M, Becker BK, Speed JS, Pollock DM. Ovariectomy uncovers purinergic receptor activation of endothelin-dependent natriuresis. Am J Physiol Renal Physiol. 2017;313(2):F361–9.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Li P, Liu H, Sun P, Wang X, Wang C, Wang L, et al. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-kappaB signaling pathway in ovariectomized rats. Exp Gerontol. 2016;74:43–55.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Lima R, Yanes LL, Davis DD, Reckelhoff JF. Roles played by 20-HETE, angiotensin II and endothelin in mediating the hypertension in aging female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2013;304(3):R248–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: taking cues from pathophysiology for clinical practice. Clin Cardiol. 2018;41(2):220–7.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol (Oxf). 2013;208(3):224–33.CrossRefGoogle Scholar
  34. 34.
    Lu YP, Hasan AA, Zeng S, Hocher B. Plasma ET-1 concentrations are elevated in pregnant women with hypertension-meta-analysis of clinical studies. Kidney Blood Press Res. 2017;42(4):654–63.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Mastrogiannis DS, O’Brien WF, Krammer J, Benoit R. Potential role of endothelin-1 in normal and hypertensive pregnancies. Am J Obstet Gynecol. 1991;165(6 Pt 1):1711–6.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    LaMarca B, Parrish M, Ray LF, Murphy SR, Roberts L, Glover P, et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension. 2009;54(4):905–9.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    LaMarca B, Amaral LM, Harmon AC, Cornelius DC, Faulkner JL, Cunningham MW. Placental ischemia and resultant phenotype in animal models of preeclampsia. Curr Hypertens Rep. 2016;18(5):38.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Bakrania BA, Spradley FT, Satchell SC, Stec DE, Rimoldi JM, Gadepalli RSV, et al. Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. 2018;314(3):R427–32.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Saleh L, Verdonk K, Visser W, van den Meiracker AH, Danser AHJ. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther Adv Cardiovasc Dis. 2016;10(5):282–93.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Jain A. Endothelin-1: a key pathological factor in pre-eclampsia? Reprod BioMed Online. 2012;25(5):443–9.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Murphy SR, LaMarca BBD, Cockrell K, Granger JP. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension. 2010;55(2):394–8.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    George EM, Granger JP. Endothelin: key mediator of hypertension in preeclampsia. Am J Hypertens. 2011;24(9):964–9.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Saleh L, Danser JA, van den Meiracker AH. Role of endothelin in preeclampsia and hypertension following antiangiogenesis treatment. Curr Opin Nephrol Hypertens. 2016;25(2):94–9.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Bakrania B, Duncan J, Warrington J, Granger J. The endothelin type A receptor as a potential therapeutic target in preeclampsia. Int J Mol Sci. 2017;18(3):522.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Thaete LG, Khan S, Synowiec S, Dayton BD, Bauch J, Neerhof MG. Endothelin receptor antagonist has limited access to the fetal compartment during chronic maternal administration late in pregnancy. Life Sci. 2012;91(13–14):583–6.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun. 1996;226(2):324–8.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct. 2001;26(1):25–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Karumanchi SA. Angiogenic factors in preeclampsia: implications for clinical practice. BJOG. 2018 (in press).Google Scholar
  50. 50.
    Karumanchi SA. Angiogenic factors in preeclampsia: from diagnosis to therapy. Hypertension. 2016;67(6):1072–9.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Verdonk K, Saleh L, Lankhorst S, Smilde JEI, van Ingen MM, Garrelds IM, et al. Association studies suggest a key role for endothelin-1 in the pathogenesis of preeclampsia and the accompanying renin-angiotensin-aldosterone system suppression. Hypertension. 2015;65(6):1316–23.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Aggarwal PK, Chandel N, Jain V, Jha V. The relationship between circulating endothelin-1, soluble fms-like tyrosine kinase-1 and soluble endoglin in preeclampsia. J Hum Hypertens. 2012;26(4):236–41.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Alterations in endothelin type B receptor contribute to microvascular dysfunction in women who have had preeclampsia. Clin Sci (Lond). 2017;131(23):2777–89.CrossRefGoogle Scholar
  54. 54.
    Majali-Martinez A, Velicky P, Pollheimer J, Knöfler M, Yung HW, Burton GJ, et al. Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B. Hum Reprod. 2017;32(1):46–54.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Taichman DB, Mandel J. Epidemiology of pulmonary arterial hypertension. Clin Chest Med. 2007;28(1):1–22. viiCrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Safdar Z. Pulmonary hypertension: a woman's disease. Tex Heart Inst J. 2013;40(3):302–3.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Rubin LJ, Badesch DB, Barst RJ, Galiè N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346(12):896–903.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Kozu K, et al. Sex differences in hemodynamic responses and long-term survival to optimal medical therapy in patients with pulmonary arterial hypertension. Heart Vessel. 2018 (in press).Google Scholar
  59. 59.
    Gabler NB, French B, Strom BL, Liu Z, Palevsky HI, Taichman DB, et al. Race and sex differences in response to endothelin receptor antagonists for pulmonary arterial hypertension. Chest. 2012;141(1):20–6.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Marra AM, Benjamin N, Eichstaedt C, Salzano A, Arcopinto M, Gargani L, et al. Gender-related differences in pulmonary arterial hypertension targeted drugs administration. Pharmacol Res. 2016;114:103–9.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Mathai SC, Hassoun PM, Puhan MA, Zhou Y, Wise RA. Sex differences in response to tadalafil in pulmonary arterial hypertension. Chest. 2015;147(1):188–97.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt

Personalised recommendations