An Obesity Paradox: Increased Body Mass Index Is Associated with Decreased Aortic Atherosclerosis

  • Rolf F. Barth
  • L. Maximilian Buja
  • Lei Cao
  • Sergey V. Brodsky


Brodsky et al. (Cardiovasc Pathol 25(6), 515–520, 2016) recently have reported that there was an unexpected and highly significant inverse correlation between body mass index (BMI) and atherosclerosis of the aortas of morbidly obese decedents (BMI >40 kg/m2). In a series of 304 decedents, 65 of whom were morbidly obese, minimal or no atherosclerosis was seen in 46 of them (70%) versus 20 (30%) who had severe atherosclerosis (P = 0.008). This obesity paradox was unexpected and raises important questions about the etiology and pathogenesis of atherosclerosis, which will be the subject of this commentary. The concept of healthy versus unhealthy adiposity may in part provide an explanation for the “obesity paradox.” Another factor that will be considered is the possible role of adipokines and their genetic determinants that may significantly reduce the risk of developing aortic atherosclerosis in morbidly obese individuals. Considering the marked variability in the pattern and extent of atherosclerosis of the aorta, hemodynamic factors and endothelial cell shear stress may be the most important determinants that might explain the obesity paradox that we have observed. Finally, the possible role of gut microbiota and inflammation as factors in the etiopathogenesis of atherosclerosis will be considered, but their importance is less clear than that of hemodynamic factors. We conclude with the remarkable finding that a 5300-year-old, well-preserved mummy of the “Iceman,” Ötzi had atherosclerotic disease of a number of major arteries and the interesting questions that this raises.


Atherosclerosis Morbid obesity Hypertension Obesity paradox 



We thank Drs. Carl “Chip” Lavie and William C. Roberts for their helpful suggestions in developing this Commentary, and Ms. Loretta Bahn for secretarial assistance in the preparation of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Brodsky SV, Barth RF, Mo X, Yildiz V, Allenby P, Ivanov I, et al. An obesity paradox: an inverse correlation between body mass index and atherosclerosis of the aorta. Cardiovasc Pathol. 2016;25(6):515–20. doi: 10.1016/j.carpath.2016.09.002.CrossRefPubMedGoogle Scholar
  2. 2.
    Kortelainen ML. Myocardial infarction and coronary pathology in severely obese people examined at autopsy. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2002;26(1):73–9. doi: 10.1038/sj.ijo.0801852.CrossRefGoogle Scholar
  3. 3.
    Kortelainen M-L, Porvari K. Extreme obesity and associated cardiovascular disease verified at autopsy: time trends over 3 decades. Am J Forensic Med Pathol. 2011;32(4):372–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82. doi: 10.1001/jama.2012.113905.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Molica F, Morel S, Kwak BR, Rohner-Jeanrenaud F, Steffens S. Adipokines at the crossroad between obesity and cardiovascular disease. Thromb Haemost. 2015;113(3):553–66. doi: 10.1160/th14-06-0513.CrossRefPubMedGoogle Scholar
  6. 6.
    Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: gaps and open questions. Nutr Metab Cardiovasc Dis. 2016; doi: 10.1016/j.numecd.2016.12.005.
  7. 7.
    Liberale L, Bonaventura A, Vecchie A, Matteo C, Dallegri F, Montecucco F, et al. The role of adipocytokines in coronary atherosclerosis. Curr Atheroscler Rep. 2017;19(2):10. doi: 10.1007/s11883-017-0644-3.CrossRefPubMedGoogle Scholar
  8. 8.
    Schmidt DS, Salahudeen AK. Obesity-survival paradox-still a controversy? Semin Dial. 2007;20(6):486–92. doi: 10.1111/j.1525-139X.2007.00349.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Lavie CJ, De Schutter A, Milani RV. Healthy obese versus unhealthy lean: the obesity paradox. Nat Rev Endocrinol. 2015;11(1):55–62. doi: 10.1038/nrendo.2014.165.CrossRefPubMedGoogle Scholar
  10. 10.
    Goyal A, Nimmakayala KR, Zonszein J. Is there a paradox in obesity? Cardiol Rev. 2014;22(4):163–70. doi: 10.1097/CRD.0000000000000004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28. doi: 10.1016/S0140-6736(05)66378-7.CrossRefPubMedGoogle Scholar
  12. 12.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644.CrossRefPubMedGoogle Scholar
  13. 13.
    Orchard TJ. Dyslipoproteinemia and diabetes. Endocrinol Metab Clin N Am. 1990;19(2):361–80.Google Scholar
  14. 14.
    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213. doi: 10.1038/nrendo.2010.20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu L, Panel V, Ma X, Du C, Hugendubler L, Gavrilova O, et al. The winged helix transcription factor Foxa3 regulates adipocyte differentiation and depot-selective fat tissue expansion. Mol Cell Biol. 2013;33(17):3392–9. doi: 10.1128/MCB.00244-13.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14(3):219–27. doi: 10.1007/s11154-013-9252-x.CrossRefPubMedGoogle Scholar
  17. 17.
    Phillips CM. Metabolically healthy obesity: personalised and public health implications. Trends Endocrinol Metab. 2016;27(4):189–91. doi: 10.1016/j.tem.2016.02.001.CrossRefPubMedGoogle Scholar
  18. 18.
    Phillips CM. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann N Y Acad Sci. 2017;1391(1):85–100. doi: 10.1111/nyas.13230.CrossRefPubMedGoogle Scholar
  19. 19.
    Lavie CJ, Sharma A, Alpert MA, De Schutter A, Lopez-Jimenez F, Milani RV, et al. Update on obesity and obesity paradox in heart failure. Prog Cardiovasc Dis. 2016;58(4):393–400. doi: 10.1016/j.pcad.2015.12.003.CrossRefPubMedGoogle Scholar
  20. 20.
    Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis. 2016;58(5):537–47. doi: 10.1016/j.pcad.2016.01.008.CrossRefPubMedGoogle Scholar
  21. 21.
    Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24. doi: 10.1001/archinte.168.15.1617.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee SH, Ha HS, Park YJ, Lee JH, Yim HW, Yoon KH, et al. Identifying metabolically obese but normal-weight (MONW) individuals in a nondiabetic Korean population: the Chungju metabolic disease cohort (CMC) study. Clin Endocrinol. 2011;75(4):475–81. doi: 10.1111/j.1365-2265.2011.04085.x.CrossRefGoogle Scholar
  23. 23.
    Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006;91(8):2906–12. doi: 10.1210/jc.2006-0594.CrossRefPubMedGoogle Scholar
  24. 24.
    Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complicat. 2013;27(2):191–9. doi: 10.1016/j.jdiacomp.2012.09.006.CrossRefPubMedGoogle Scholar
  25. 25.
    McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L. Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism through AKT activation. Diabetes. 2017;66(2):358–71. doi: 10.2337/db16-0876.CrossRefPubMedGoogle Scholar
  26. 26.
    Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–703.CrossRefPubMedGoogle Scholar
  27. 27.
    Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8. doi: 10.1074/jbc.M209033200.CrossRefPubMedGoogle Scholar
  28. 28.
    van Stijn CM, Kim J, Barish GD, Tietge UJ, Tangirala RK. Adiponectin expression protects against angiotensin II-mediated inflammation and accelerated atherosclerosis. PLoS One. 2014;9(1):e86404.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103(8):1057–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J Endocrinol. 2013;216(1):T17–36. doi: 10.1530/JOE-12-0232.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37. doi: 10.1172/JCI31021.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mo C, Yang M, Han X, Li J, Gao G, Tai H, et al. Fat mass and obesity-associated protein attenuates lipid accumulation in macrophage foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Hypertens. 2017;35(4):810–21. doi: 10.1097/hjh.0000000000001255.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee Y, Naseem RH, Duplomb L, Park BH, Garry DJ, Richardson JA, et al. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci U S A. 2004;101(37):13624–9. doi: 10.1073/pnas.0405499101.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hoffmann A, Ebert T, Kloting N, Dokas J, Jeromin F, Jessnitzer B, et al. Leptin dose-dependently decreases atherosclerosis by attenuation of hypercholesterolemia and induction of adiponectin. Biochim Biophys Acta. 2016;1862(1):113–20. doi: 10.1016/j.bbadis.2015.10.022.CrossRefPubMedGoogle Scholar
  35. 35.
    Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006;189(1):47–60. doi: 10.1016/j.atherosclerosis.2006.03.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Virtue A, Johnson C, Lopez-Pastraña J, Shao Y, Fu H, Li X, et al. MicroRNA-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and non-alcoholic fatty liver disease a novel mouse model of obesity paradox. J Biol Chem. 2017;292(4):1267–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Berezina A, Belyaeva O, Berkovich O, Baranova E, Karonova T, Bazhenova E, et al. Prevalence, risk factors, and genetic traits in metabolically healthy and unhealthy obese individuals. Biomed Res Int. 2015;2015:548734. doi: 10.1155/2015/548734.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Davis AE, Lewandowski AJ, Holloway CJ, Ntusi NA, Banerjee R, Nethononda R, et al. Observational study of regional aortic size referenced to body size: production of a cardiovascular magnetic resonance nomogram. J Cardiovasc Magn Reson. 2014;16:9. doi: 10.1186/1532-429x-16-9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cowan GS Jr, Defibaugh N, White T, Hiler ML, Somes G. Aorta and iliac arterial sizes in pre-operative morbidly obese patients: a preliminary report. Obes Surg. 1991;1(2):155–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22(2):165–97.CrossRefPubMedGoogle Scholar
  41. 41.
    Wellnhofer E, Bocksch W, Hiemann N, Dandel M, Klimek W, Hetzer R, et al. Shear stress and vascular remodeling: study of cardiac allograft coronary artery disease as a model of diffuse atherosclerosis. J Heart Lung Transplant. 2002;21(4):405–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee BK, Kwon HM, Hong BK, Park BE, Suh SH, Cho MT, et al. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation. Yonsei Med J. 2001;42(4):375–83. doi: 10.3349/ymj.2001.42.4.375.CrossRefPubMedGoogle Scholar
  43. 43.
    Friedman MH. Some atherosclerosis may be a consequence of the normal adaptive vascular response to shear. Atherosclerosis. 1990;82(3):193–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF. Shear-dependent thickening of the human arterial intima. Atherosclerosis. 1986;60(2):161–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Heo KS, Fujiwara K, Abe J. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J. 2011;75(12):2722–30.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Garin G, Abe J, Mohan A, Lu W, Yan C, Newby AC, et al. Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ Res. 2007;101(1):97–105. doi: 10.1161/circresaha.107.148270.CrossRefPubMedGoogle Scholar
  47. 47.
    Reinhart-King CA, Fujiwara K, Berk BC. Physiologic stress-mediated signaling in the endothelium. Methods Enzymol. 2008;443:25–44. doi: 10.1016/s0076-6879(08)02002-8.CrossRefPubMedGoogle Scholar
  48. 48.
    Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87. doi: 10.1038/nrcardio.2016.183.
  49. 49.
    Benagiano M, Munari F, Ciervo A, Amedei A, Paccani SR, Mancini F, et al. Chlamydophila pneumoniae phospholipase D (CpPLD) drives Th17 inflammation in human atherosclerosis. Proc Natl Acad Sci U S A. 2012;109(4):1222–7. doi: 10.1073/pnas.1111833109.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97. doi: 10.1146/annurev.immunol.021908.132620.
  51. 51.
    Ravnskov U, McCully KS. Infections may be causal in the pathogenesis of atherosclerosis. Am J Med Sci. 2012;344(5):391–4. doi: 10.1097/MAJ.0b013e31824ba6e0.CrossRefPubMedGoogle Scholar
  52. 52.
    Zink A, Wann LS, Thompson RC, Keller A, Maixner F, Allam AH, et al. Genomic correlates of atherosclerosis in ancient humans. Glob Heart. 2014;9(2):203–9. doi: 10.1016/j.gheart.2014.03.2453.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rolf F. Barth
    • 1
  • L. Maximilian Buja
    • 2
  • Lei Cao
    • 3
  • Sergey V. Brodsky
    • 4
  1. 1.Department of PathologyThe Ohio State UniversityColumbusUSA
  2. 2.McGovern Medical School, Department of Pathology and Laboratory MedicineUniversity of TexasHoustonUSA
  3. 3.Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusUSA
  4. 4.Department of PathologyThe Ohio State UniversityColumbusUSA

Personalised recommendations