Advertisement

Factors Responsible for Obesity-Related Hypertension

  • Kyungjoon Lim
  • Kristy L. Jackson
  • Yusuke Sata
  • Geoffrey A. HeadEmail author
Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Abstract

Purpose of Review

The major health issue of being overweight or obese relates to the development of hypertension, insulin resistance and diabetic complications. One of the major underlying factors influencing the elevated blood pressure in obesity is increased activity of the sympathetic nerves to particular organs such as the kidney.

Recent Findings

There is now convincing evidence from animal studies that major signals such as leptin and insulin have a sympathoexcitatory action in the hypothalamus to cause hypertension. Recent studies suggest that this may involve ‘neural plasticity’ within hypothalamic signalling driven by central actions of leptin mediated via activation of melanocortin receptor signalling and activation of brain neurotrophic factors.

Summary

This review describes the evidence to support the contribution of the SNS to obesity related hypertension and the major metabolic and adipokine signals.

Keywords

Hypertension Obesity Insulin Leptin Central nervous system Sympathetic nervous system Hypothalamus High fat diet Aversive stress Blood pressure 

Notes

Acknowledgments

This work was supported by grants from the National Health & Medical Research Council of Australia (NHMRC; APP526618 and APP1043205). The study was supported, in part, by the Victorian Government’s Operational Infrastructure Support Program. G.A. Head was funded by an NHMRC Fellowship (APP1002186). KL was funded by an NHMRC Postdoctoral Fellowship (APP1053928). KLJ was funded by an NHMRC Fellowship (APP1091688). YS was funded by a Heart Foundation Fellowship and Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad, and JSPS KAKENHI Grant Number JP 25·5473.

Compliance with Ethical Standards

Conflict of Interest

Drs. Jackson, Lim and Head report grants from NHMRC and National Heart Foundation. Dr. Sata reports grants from Heart Foundation, Japan Heart Foundation/Bayer Yakuhin and Japan Society for the Promotion of Science.

K Lim, KL Jackson, Y Sata and GA Head declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of Major Importance

  1. 1.
    Alwan A, World Health Organization. Global Status Report on Noncommunicable Diseases 2010. 2010.Google Scholar
  2. 2.
    Head G. Cardiovascular and metabolic consequences of obesity. Front Physiol. 2015;6(32):1–3.Google Scholar
  3. 3.
    Dzau VJ. Atherosclerosis and hypertension: mechanisms and interrelationships. J Cardiovasc Pharmacol. 1990;15(Suppl 5):S59–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Head GA, Lim K, Barzel B, Burke SL, Davern PJ. Central nervous system dysfunction in obesity induced hypertension. Curr Hypertens Rep. 2014;16(9):466–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol. 2016;594(3):527–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17(8):1125–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Davy KP, Hall JE. Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R803–R13.PubMedCrossRefGoogle Scholar
  9. 9.
    Robles RG, Villa E, Santirso R, Martinez J, Ruilope LM, Cuesta C, et al. Effects of captopril on sympathetic activity, lipid and carbohydrate metabolism in a model of obesity-induced hypertension in dogs. Am J Hypertens. 1993;6(12):1009–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Hall JE. Mechanisms of abnormal renal sodium handling in obesity hypertension. Am J Hypertens. 1997;10(5 Pt 2):49S–55S.PubMedCrossRefGoogle Scholar
  11. 11.
    da Silva AA, do Carmo J, Dubinion J, Hall JE. The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep. 2009;11(3):206–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96(10):3423–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens Res. 2012;35(1):4–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50(5):862–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, Masuo K, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25(7):1411–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106(20):2533–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Straznicky NE, Lambert EA, Grima MT, Eikelis N, Richards K, Nestel PJ, et al. The effects of dietary weight loss on indices of norepinephrine turnover: modulatory influence of hyperinsulinemia. Obesity (Silver Spring). 2014;22(3):652–62.CrossRefGoogle Scholar
  18. 18.
    Lambert EA, Rice T, Eikelis N, Straznicky NE, Lambert GW, Head GA, et al. Sympathetic activity and cardiovascular risk in non-diabetic severely obese patients: the effect of 10% weight loss. Am J Hypertens. 2014;27(10):1308–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Moretti J-L, Burke SL, Evans RG, Lambert GW, Head GA. Enhanced responses to ganglion blockade do not reflect sympathetic nervous system contribution to angiotensin II-induced hypertension. J Hypertens. 2009;27(9):1838–48.PubMedCrossRefGoogle Scholar
  21. 21.
    Carlson SH, Shelton J, White CR, Wyss JM. Elevated sympathetic activity contributes to hypertension and salt sensitivity in diabetic obese Zucker rats. Hypertension. 2000;35(1 Pt 2):403–8.PubMedCrossRefGoogle Scholar
  22. 22.
    • Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60:163–71. We found that elevated sympathetic drive and impaired baroreflex function which occur within 1 week of rabbits consuming a high-fat, diet is integral to the rapid development of obesity related hypertension due to increased plasma leptin and insulin. PubMedCrossRefGoogle Scholar
  23. 23.
    Rajapakse N, Karim F, Straznicky N, Fernande S, Evans R, Head G, et al. Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension. Acta Physiol (Oxf). 2014;212(1):39–48.CrossRefGoogle Scholar
  24. 24.
    Shibao C, Gamboa A, Diedrich A, Ertl AC, Chen KY, Byrne DW, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49(1):27–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Bonaa KH, Thelle DS. Association between blood pressure and serum lipids in a population. The Tromso study. Circulation. 1991;83(4):1305–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham study. Am Heart J. 1985;110:1100–7.PubMedCrossRefGoogle Scholar
  27. 27.
    MacMahon SW, Macdonald GJ, Blacket RB. Plasma lipoprotein levels in treated and untreated hypertensive men and women. The National Heart Foundation of Australia Risk Factor Prevalence study. Arteriosclerosis. 1985;5(4):391–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Paim BA, Velho JA, Castilho RF, Oliveira HC, Vercesi AE. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Free Radic Biol Med. 2008;44(3):444–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Evangelho JS, Casali KR, Campos C, De Angelis K, Veiga AB, Rigatto K. Hypercholesterolemia magnitude increases sympathetic modulation and coagulation in LDLr knockout mice. Auton Neurosci. 2011;159(1–2):98–103.PubMedCrossRefGoogle Scholar
  30. 30.
    de Oliveira J, Hort MA, Moreira EL, Glaser V, Ribeiro-do-Valle RM, Prediger RD, et al. Positive correlation between elevated plasma cholesterol levels and cognitive impairments in LDL receptor knockout mice: relevance of cortico-cerebral mitochondrial dysfunction and oxidative stress. Neuroscience. 2011;197:99–106.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119(7):978–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT. The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol. 2011;38(2):144–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT, et al. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am J Hypertens. 2009;22(5):484–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Fujita M, Ando K, Nagae A, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension. 2007;50(2):360–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Marques FZ, Campain AE, Davern PJ, Yang YHI, Head GA, Morris BJ. Genes influencing circadian differences in blood pressure in hypertensive mice. PLoS One. 2011;6(4):e19203. 1-9 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fujita M, Kuwaki T, Ando K, Fujita T. Sympatho-inhibitory action of endogenous adrenomedullin through inhibition of oxidative stress in the brain. Hypertension. 2005;45(6):1165–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, et al. Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys. 1997;272(6 Pt 2):H2701–7.Google Scholar
  38. 38.
    Strehlow K, Wassmann S, Bohm M, Nickenig G. Angiotensin AT1 receptor over-expression in hypercholesterolaemia. Ann Med. 2000;32(6):386–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Borghi C, Veronesi M, Cosentino E, Cicero AF, Kuria F, Dormi A, et al. Interaction between serum cholesterol levels and the renin-angiotensin system on the new onset of arterial hypertension in subjects with high-normal blood pressure. J Hypertens. 2007;25(10):2051–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Kishi T, Hirooka Y. Sympathoexcitation associated with renin-angiotensin system in metabolic syndrome. Int J Hypertens. 2013;2013:406897.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Millar PJ, Floras JS. Statins and the autonomic nervous system. Clin Sci (Lond). 2014;126(6):401–15.CrossRefGoogle Scholar
  42. 42.
    Lambert E, Chatzivlastou K, Schlaich M, Lambert G, Head G. Morning surge in blood pressure is associated with reactivity of the sympathetic nervous system. Am J Hypertens. 2014;27(6):783–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Head GA, Andrianopoulos N, McGrath BP, Martin CA, Carrington MJ, Lukoshkova EV, et al. Predictors of mean arterial pressure morning rate of rise and power function in subjects undergoing ambulatory blood pressure recording. PLoS One. 2014;9(3):e93186. 1-10 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2011;108(7):2939–44.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med. 2011;17(7):883–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56(2):297–303.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Xue B, Thunhorst RL, Yu Y, Guo F, Beltz TG, Felder RB, et al. Central renin-angiotensin system activation and inflammation induced by high-fat diet sensitize angiotensin II-elicited hypertension. Hypertension. 2016;67(1):163–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, et al. Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin-angiotensin system and inflammation. Hypertension. 2016;67(5):970–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Eikelis N, Lambert G, Wiesner G, Kaye D, Schlaich M, Morris M, et al. Extra-adipocyte leptin release in human obesity and its relation to sympathoadrenal function. Am J Physiol Endocrinol Metab. 2004;286(5):E744–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Lambert E, Straznicky N, Sari CK, Eikelis N, Hering D, Head GA, et al. Dyslipidemia is associated with sympathetic nervous activation and impaired endothelial function in young females. Am J Hypertens. 2013;26(2):250–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsumura K, Abe I, Tsuchihashi T, Fujishima M. Central effects of leptin on cardiovascular and neurohormonal responses in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2000;278(5):R1314–R20.PubMedGoogle Scholar
  53. 53.
    Dunbar JC, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes. 1997;46(12):2040–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31(1 Pt 2):409–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension. 2002;39(2 Pt 2):496–501.PubMedCrossRefGoogle Scholar
  57. 57.
    Baltatzi M, Hatzitolios A, Tziomalos K, Iliadis F, Zamboulis C. Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract. 2008;62(9):1432–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav. 2001;74(4–5):683–701.PubMedCrossRefGoogle Scholar
  59. 59.
    do Carmo JM, da Silva AA, Cai Z, Lin S, Dubinion JH, Hall JE. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension. 2011;57(5):918–26.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tallam LS, da Silva AA, Hall JE. Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension. 2006;48(1):58–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Harlan SM, Rahmouni K. PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2013;2(2):69–73.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, Rahmouni K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 2013;17(4):599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428(6982):569–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Tanida M, Yamamoto N, Morgan DA, Kurata Y, Shibamoto T, Rahmouni K. Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. J Neurosci. 2015;35(2):474–84.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shi Z, Brooks VL. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen. J Physiol. 2015;593(7):1633–47.PubMedCrossRefGoogle Scholar
  66. 66.
    Burke SL, Head GA. Method for in vivo calibration of renal sympathetic nerve activity in rabbits. J Neurosci Meth. 2003;127:63–74.CrossRefGoogle Scholar
  67. 67.
    • Prior L, Eikelis N, Armitage J, Davern P, Burke S, Montani J-P, et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55(4):862–8. We provided the first direct evidence that renal sympathetic outflow is elevated in response to high-fat feeding and increased visceral fat deposits and that a marked facilitation of the central sympathoexcitatory responses to leptin likely obesity-hypertension. PubMedCrossRefGoogle Scholar
  68. 68.
    Barzel B, Weir J, Meikle P, Burke SL, Armitage J, Head GA. Short term fat feeding rapidly increases plasma insulin but does not result in dyslipidaemia. Front Physiol. 2014;5(469):1–8.Google Scholar
  69. 69.
    Burke SL, Prior LJ, Lukoshkova EV, Lim K, Barzel B, Davern P, et al. Reduced preprandial dipping accounts for rapid elevation of blood pressure and renal sympathetic nerve activity in rabbits fed a high-fat diet. Chronobiol Int. 2013;30(5):726–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Barzel B, Lim K, Burke SL, Armitage J, Head GA. Specific role of dietary fat in modifying cardiovascular and locomotor activity 24h rhythms. Chronobiol Int. 2015;32(5):668–76.PubMedCrossRefGoogle Scholar
  71. 71.
    •• Lim K, Burke SL, Head GA. Obesity related hypertension and the role of insulin and leptin in high fat fed rabbits. Hypertension. 2013;61(3):628–34. This study used central administration of selective leptin and insulin antagonists to show that the hypertension and elevated renal sympathetic activity induced by a high fat diet for several weeks are predominantly mediated by central sympathoexcitatory actions of the hormone leptin. PubMedCrossRefGoogle Scholar
  72. 72.
    Barzel B, Lim K, Davern PJ, Burke SL, Armitage JA, Head GA. Central pro-opiomelanocortin but not neuropeptide Y mediates sympatho-excitation and hypertension in fat fed conscious rabbits. J Hypertens. 2016;34(3):464–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Mark AL, Correia ML, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens. 2002;20(7):1245–50.PubMedCrossRefGoogle Scholar
  74. 74.
    do Carmo JM, da Silva AA, Hall JE. Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats. J Hypertens. 2015;33(6):1201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    da Silva AA, do Carmo JM, Kanyicska B, Dubinion J, Brandon E, Hall JE. Endogenous melanocortin system activity contributes to the elevated arterial pressure in spontaneously hypertensive rats. Hypertension. 2008;51(4):884–90.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Marsh AJ, Fontes MA, Killinger S, Pawlak DB, Polson JW, Dampney RA. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 2003;42(4):488–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Young CN, Morgan DA, Butler SD, Mark AL, Davisson RL. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013;61(3):737–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, et al. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159(6):1404–16.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;395(4):535–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian cardiac outcomes trial-blood pressure lowering arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895–906.PubMedCrossRefGoogle Scholar
  81. 81.
    Vander Tuig JG, Knehans AW, Romsos DR. Reduced sympathetic nervous system activity in rats with ventromedial hypothalamic lesions. Life Sci. 1982;30(11):913–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, et al. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res. 2011;108(7):808–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Qi Y, Henry BA, Oldfield BJ, Clarke IJ. The action of leptin on appetite-regulating cells in the ovine hypothalamus: demonstration of direct action in the absence of the arcuate nucleus. Endocrinology. 2010;151(5):2106–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Ambati S, Duan J, Choi YH, Hartzell DL, Della-Fera MA, Baile CA. ICV vs. VMH injection of leptin: comparative effects on hypothalamic gene expression. Behav Brain Res. 2009;196(2):279–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Lindberg D, Chen P, Li C. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 2013;521(14):3167–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Lim K, Barzel B, Burke S, Armitage J, Head G. The origin of aberrant blood pressure and sympathetic regulation in diet induced obesity. Hypertension. 2016;68(2):491–500.PubMedCrossRefGoogle Scholar
  87. 87.
    Montanaro MS, Allen AM, Oldfield BJ. Structural and functional evidence supporting a role for leptin in central neural pathways influencing blood pressure in rats. Exp Physiol. 2005;90(5):689–96.PubMedCrossRefGoogle Scholar
  88. 88.
    Prior L, Davern P, Burke S, Lim K, Armitage J, Head G. Exposure to a high fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2014;63(2):338–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45(1):9–14.PubMedCrossRefGoogle Scholar
  90. 90.
    Horvath TL. Synaptic plasticity mediating leptin’s effect on metabolism. Prog Brain Res. 2006;153:47–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Irving AJ, Wallace L, Durakoglugil D, Harvey J. Leptin enhances NR2B-mediated N-methyl-D-aspartate responses via a mitogen-activated protein kinase-dependent process in cerebellar granule cells. Neuroscience. 2006;138(4):1137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304(5667):110–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Nuzzaci D, Laderriere A, Lemoine A, Nedelec E, Penicaud L, Rigault C, et al. Plasticity of the melanocortin system: determinants and possible consequences on food intake. Front Endocrinol (Lausanne). 2015;6:143.Google Scholar
  94. 94.
    Toda C, Shiuchi T, Kageyama H, Okamoto S, Coutinho EA, Sato T, et al. Extracellular signal-regulated kinase in the ventromedial hypothalamus mediates leptin-induced glucose uptake in red-type skeletal muscle. Diabetes. 2013;62(7):2295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25(2):89–98.PubMedCrossRefGoogle Scholar
  96. 96.
    Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736–42.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Caruso V, Lagerstrom MC, Olszewski PK, Fredriksson R, Schioth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci. 2014;15(2):98–110.PubMedCrossRefGoogle Scholar
  99. 99.
    Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. Selective deletion of BDNF in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci. 2007;27(52):14265–74.PubMedCrossRefGoogle Scholar
  100. 100.
    Rios M. BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci. 2013;36(2):83–90.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B. Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology. 2009;150(6):2646–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kyungjoon Lim
    • 1
    • 2
    • 3
  • Kristy L. Jackson
    • 2
  • Yusuke Sata
    • 2
    • 4
  • Geoffrey A. Head
    • 2
    • 3
    • 5
    Email author
  1. 1.Department of Physiology, Anatomy & MicrobiologyLa Trobe UniversityMelbourneAustralia
  2. 2.Neuropharmacology LaboratoryBaker Heart & Diabetes InstituteMelbourneAustralia
  3. 3.Department of PhysiologyMonash UniversityClaytonAustralia
  4. 4.Central Clinical School, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonAustralia
  5. 5.Department of PharmacologyMonash UniversityClaytonAustralia

Personalised recommendations