Advertisement

DOCA-Salt Hypertension: an Update

  • Tyler Basting
  • Eric LazartiguesEmail author
Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Abstract

Hypertension is a multifaceted disease that is involved in ∼40% of cardiovascular mortalities and is the result of both genetic and environmental factors. Because of its complexity, hypertension has been studied by using various models and approaches, each of which tends to focus on individual organs or tissues to isolate the most critical and treatable causes of hypertension and the related damage to end-organs. Animal models of hypertension have ranged from Goldblatt’s kidney clip models in which the origin of the disease is clearly renal to animals that spontaneously develop hypertension either through targeted genetic manipulations, such as the TGR(mRen2)27, or selective breeding resulting in more enigmatic origins, as exemplified by the spontaneously hypertensive rat (SHR). These two genetically derived models simulate the less-common human primary hypertension in which research has been able to define a Mendelian linkage. Several models are more neurogenic or endocrine in nature and illustrate that crosstalk between the nervous system and hormones can cause a significant rise in blood pressure (BP). This review will examine one of these neurogenic models of hypertension, i.e., the deoxycorticosterone acetate (DOCA), reduced renal mass, and high-salt diet (DOCA-salt) rodent model, one of the most common experimental models used today. Although the DOCA-salt model is mainly believed to be neurogenic and has been shown to impact the central and peripheral nervous systems, it also significantly involves many other body organs.

Keywords

DOCA-salt Neurogenic hypertension Neurohormonal Cardiovascular Renal Immune 

Notes

Compliance with Ethical Standards

Conflict of Interest

Drs. Basting and Lazartigues declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Carretero OA, Oparil S. Essential hypertension part I: definition and etiology. Circulation. 2000:329–35Google Scholar
  2. 2.
    Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Drenjancevic-Peric I, Jelakovic B, Lombard JH, Kunert MP, Kibel A, Gros M. High-salt diet and hypertension: focus on the renin-angiotensin system. Kidney Blood Press Res. 2011;34(1):1–11. doi: 10.1159/000320387.CrossRefPubMedGoogle Scholar
  4. 4.
    Zicha J, Kunes J, Lebl M, Pohlova I, Slaninova J, Jelinek J. Antidiuretic and pressor actions of vasopressin in age-dependent DOCA-salt hypertension. Am J Phys. 1989;256(1 Pt 2):R138–45.Google Scholar
  5. 5.
    Anderson PG, Bishop SP, Digerness SB. Coronary vascular function and morphology in hydralazine treated DOCA salt rats. J Mol Cell Cardiol. 1988;20(10):955–67.CrossRefPubMedGoogle Scholar
  6. 6.
    • Xia H, Sriramula S, Chhabra K, Lazartigues E. Brain ACE2 shedding contributes to the development of neurogenic hypertension. Circ Res. 2013;113:1087–96. This study highlights how ACE2 and Ang1-7 are downregulated in hypertension and could be major beneficial players in future therapeutics. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    • Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 2011;57(3):600–7. doi: 10.1161/hypertensionaha.110.165829. This emphasizes the critical players in the CNS contributing to DOCA-salt hypertension. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8(6 Pt 2):II127–34.PubMedGoogle Scholar
  9. 9.
    Poch E, Gonzalez D, Giner V, Bragulat E, Coca A, de La Sierra A. Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension. 2001;38(5):1204–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Funder J, New MI. Low renin hypertension (LRH): shades of John Laragh. Trends Endocrinol Metab. 2008;19(3):83. doi: 10.1016/j.tem.2008.01.008.CrossRefPubMedGoogle Scholar
  11. 11.
    Turkkan JS, Goldstein DS. Production and reversal of DOCA-salt hypertension in baboons. Clin Exp Hypertens A. 1987;9(1):125–40.PubMedGoogle Scholar
  12. 12.
    Abrams JM, Engeland WC, Osborn JW. Effect of intracerebroventricular benzamil on cardiovascular and central autonomic responses to DOCA-salt treatment. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1500–10. doi: 10.1152/ajpregu.00431.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Dampney RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40(3):283–96. doi: 10.1152/advan.00027.2016. A detailed review of the cardiovascular and circulatory components involved in the pathogenesis of hypertension. CrossRefPubMedGoogle Scholar
  14. 14.
    Takeda K, Nakamura Y, Hayashi J, Kawasaki S, Nakata T, Oguro M, et al. Effects of salt and DOCA on hypothalamic and baroreflex control of blood pressure. Clin Exp Hypertens A. 1988;10(Suppl 1):289–99.PubMedGoogle Scholar
  15. 15.
    •• Takeda K, Nakamura Y, Oguro M, Kawasaki S, Hayashi J, Tanabe S, et al. Central attenuation of baroreflex precedes the development of hypertension in DOCA-salt-treated rats. Am J Hypertens. 1988;1(3 Pt 3):23S–5S. An early study showing that changes in the central nervous system predate those in the periphery in the pathogenesis of hypertension. CrossRefPubMedGoogle Scholar
  16. 16.
    O'Donaughy TL, Brooks VL. Deoxycorticosterone acetate-salt rats: hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension. 2006;47(4):680–5. doi: 10.1161/01.HYP.0000214362.18612.6e.CrossRefPubMedGoogle Scholar
  17. 17.
    Scrogin KE, Grygielko ET, Brooks VL. Osmolality: a physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. Am J Phys. 1999;276(6 Pt 2):R1579–86.Google Scholar
  18. 18.
    Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37(2 Pt 2):429–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Fink GD, Johnson RJ, Galligan JJ. Mechanisms of increased venous smooth muscle tone in desoxycorticosterone acetate-salt hypertension. Hypertension. 2000;35(1 Pt 2):464–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Fink GD, Pawloski CM, Blair ML, Mangiapane ML. The area postrema in deoxycorticosterone-salt hypertension in rats. Hypertension. 1987;9(6 Pt 2):III206–9.PubMedGoogle Scholar
  21. 21.
    Berecek KH, Barron KW, Webb RL, Brody MJ. Vasopressin-central nervous system interactions in the development of DOCA hypertension. Hypertension. 1982;4(3 Pt 2):131–7.PubMedGoogle Scholar
  22. 22.
    Ciriello J. Contribution of forebrain mechanisms in the maintenance of deoxycorticosterone acetate-salt hypertension. Clin Exp Hypertens A. 1988;10(Suppl 1):169–78.PubMedGoogle Scholar
  23. 23.
    Bruner CA, Mangiapane ML, Fink GD, Webb RC. Area postrema ablation and vascular reactivity in deoxycorticosterone-salt-treated rats. Hypertension. 1988;11(6 Pt 2):668–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Fink GD, Bruner CA, Mangiapane ML. Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension. 1987;9:355–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Ueno Y, Mohara O, Brosnihan KB, Ferrario CM. Characteristics of hormonal and neurogenic mechanisms of deoxycorticosterone-induced hypertension. Hypertension. 1988;11(2 Pt 2):I172–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Hamlyn JM, Blaustein MP. Sodium chloride, extracellular fluid volume, and blood pressure regulation. Am J Phys. 1986;251(4 Pt 2):F563–75.Google Scholar
  27. 27.
    Falcon JC, Phillips MI, Hoffman WE, Brody MJ. Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am J Phys. 1978;235:H392–H9.Google Scholar
  28. 28.
    Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35(7 Suppl. 4):S1–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Albrecht vBuHOD. The CNS renin-angiotensin system 2006.Google Scholar
  30. 30.
    Chapleau MW, Abboud FM. Neuro-cardiovascular regulation: from molecules to man. Ann NY Acad Sci. 2001:1. New York.Google Scholar
  31. 31.
    Gutkind JS, Kurihara M, Saavedra JM. Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats. Am J Hypertens. 1988;255(3 Pt 2):H646–H50.Google Scholar
  32. 32.
    Mangiapane ML, Simpson JB. Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology. 1980;31(6):380–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Li W, Liu J, Hammond SL, Tjalkens RB, Saifudeen Z, Feng Y. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. Am J Physiol Regul Integr Comp Physiol. 2015;309(2):R138–47. doi: 10.1152/ajpregu.00319.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chan JY, Wang LL, Lee HY, Chan SH. Augmented upregulation by c-fos of angiotensin subtype 1 receptor in nucleus tractus solitarii of spontaneously hypertensive rats. Hypertension. 2002;40(3):335–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, et al. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2012;303(2):H197–206. doi: 10.1152/ajpheart.00974.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Park CG, Leenen FH. Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. J Korean Med Sci. 2001;16(5):553–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Somers MJ, Mavromatis K, Galis ZS, Harrison DG. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 2000;101(14):1722–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Basso N, Ruiz P, Kurnjek ML, Cannata MA, Taquini AC. The brain renin-angiotensin system and the development of DOC-salt hypertension. Clin Exp Hypertens A. 1985;7(9):1259–68.PubMedGoogle Scholar
  39. 39.
    Tada Y, Wada K, Shimada K, Makino H, Liang EI, Murakami S, et al. Roles of hypertension in the rupture of intracranial aneurysms. Stroke. 2014;45(2):579–86. doi: 10.1161/STROKEAHA.113.003072.CrossRefPubMedGoogle Scholar
  40. 40.
    Basso N, Ruiz P, Mangiarua E, Taquini AC. Renin-like activity in the rat brain during the development of DOC-salt hypertension. Hypertension. 1981;3(6 Pt 2):II-14-7.PubMedGoogle Scholar
  41. 41.
    Itaya Y, Suzuki H, Matsukawa S, Kondo K, Saruta T. Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am J Phys. 1986;251(2 Pt 2):H261–H8.Google Scholar
  42. 42.
    Danser AH. The role of the (pro)renin receptor in hypertensive disease. Am J Hypertens. 2015;28(10):1187–96. doi: 10.1093/ajh/hpv045.CrossRefPubMedGoogle Scholar
  43. 43.
    Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, et al. Intracerebroventricular infusion of the (pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension. 2015;65(2):352–61. doi: 10.1161/HYPERTENSIONAHA.114.04458.CrossRefPubMedGoogle Scholar
  44. 44.
    Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, et al. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension. 2014;63(2):316–23. doi: 10.1161/HYPERTENSIONAHA.113.02041.CrossRefPubMedGoogle Scholar
  45. 45.
    Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RAS, et al. Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res. 2010;106(2):373–82. doi: 10.1161/circresaha.109.208645.CrossRefPubMedGoogle Scholar
  46. 46.
    Xu P, Sriramula S, Lazartigues E. ACE2/Ang-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiology-Regul Integr Comp Physiol. 2011;300(4):R804–17. doi: 10.1152/ajpregu.00222.2010.CrossRefGoogle Scholar
  47. 47.
    Ferrario CM. ACE2: more of Ang-(1-7) or less Ang II? Curr Opin Nephrol Hypertens. 2011;20(1):1–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Lange DL, Haywood JR, Hinojosa-Laborde C. Endothelin enhances and inhibits adrenal catecholamine release in deoxycorticosterone acetate-salt hypertensive rats. Hypertension. 2000;35(1 Pt 2):385–90.CrossRefPubMedGoogle Scholar
  49. 49.
    de Champlain J, Eid H, Papin D. Potentiated endothelin-1-induced phosphoinositide hydrolysis in atria and mesenteric artery of DOCA-salt hypertensive rats. J Hypertens Suppl. 1989;7(6):S136–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Lange DL, Haywood JR, Hinojosa-Laborde C. Role of the adrenal medullae in male and female DOCA-salt hypertensive rats. Hypertension. 1998;31(1 Pt 2):403–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Moreau P, Drolet G, Yamaguchi N, de Champlain J. Role of presynaptic beta 2-adrenergic facilitation in the development and maintenance of DOCA-salt hypertension. Am J Hypertens. 1993;6(12):1016–24.CrossRefPubMedGoogle Scholar
  52. 52.
    Hofbauer KG, Studer W, Mah SC, Michel JB, Wood JM, Stalder R. The significance of vasopressin as a pressor agent. J Cardiovasc Pharmacol. 1984;6(Suppl 2):S429–38.CrossRefPubMedGoogle Scholar
  53. 53.
    Mohring J, Mohring B, Petri M, Haack D. Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Phys. 1977;232(3):F260–9.Google Scholar
  54. 54.
    Mimura Y, Ogura T, Yamauchi T, Otsuka F, Oishi T, Harada K, et al. Effect of vasopressin V1- and V2-receptor stimulation on blood pressure in DOCA-salt hypertensive rats. Acta Med Okayama. 1995;49(4):187–94.PubMedGoogle Scholar
  55. 55.
    Rao MR. Effects of tetrandrine on cardiac and vascular remodeling. Acta Pharmacol Sin. 2002;23(12):1075–85.PubMedGoogle Scholar
  56. 56.
    Lee LK, Kim MY, Kim JH, Lee JU, Park BS, Yang SM, et al. A review of deoxycorticosterone acetate-salt hypertension and its relevance for cardiovascular physiotherapy research. J Phys Ther Sci. 2015;27(1):303–7. doi: 10.1589/jpts.27.303.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Reiter U, Reiter G, Manninger M, Adelsmayr G, Schipke J, Alogna A, et al. Early-stage heart failure with preserved ejection fraction in the pig: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18(1):63. doi: 10.1186/s12968-016-0283-9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Moreno MU, Eiros R, Gavira JJ, Gallego C, Gonzalez A, Ravassa S, et al. The hypertensive myocardium: from microscopic lesions to clinical complications and outcomes. Med Clin North Am. 2017;101(1):43–52. doi: 10.1016/j.mcna.2016.08.002.CrossRefPubMedGoogle Scholar
  59. 59.
    Koito H, Yutaka H. CT and MRI findings of pulmonary hypertension. Nihon Rinsho. 2001;59(6):1107–12.PubMedGoogle Scholar
  60. 60.
    Bright R. Observations on the treatment of fever. Case of simple fever, protracted by irritation of the bowels, and attended by relapse. Guy's Hospital Reports. 1836;1:1–8.Google Scholar
  61. 61.
    • Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014;124(6):2341–7. doi: 10.1172/JCI72274. A brief review that touches upon multiple alterations of the kidney during hypertension, including some mechanistic and physiological findings. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech. 2016;9(12):1419–33. doi: 10.1242/dmm.027276.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2016; doi: 10.1152/ajprenal.00427.2016.PubMedGoogle Scholar
  64. 64.
    Yemane H, Busauskas M, Burris SK, Knuepfer MM. Neurohumoral mechanisms in deoxycorticosterone acetate (DOCA)-salt hypertension in rats. Exp Physiol. 2010;95(1):51–5. doi: 10.1113/expphysiol.2008.046334.CrossRefPubMedGoogle Scholar
  65. 65.
    Kandlikar SS, Fink GD. Splanchnic sympathetic nerves in the development of mild DOCA-salt hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1965–73. doi: 10.1152/ajpheart.00086.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kandlikar SS, Fink GD. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves. Am J Physiol Heart Circ Physiol. 2011;300(5):H1781–7. doi: 10.1152/ajpheart.00972.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham-Jeyaraj N, Van Helden D, et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension. 2016;68(6):1415–23. doi: 10.1161/HYPERTENSIONAHA.116.07850.CrossRefPubMedGoogle Scholar
  68. 68.
    Mahfoud F, Brilakis N, Bohm M, Narkiewicz K, Ruilope L, Schlaich M, et al. TCT-761 long-term (3-year) safety and effectiveness from the Global SYMPLICITY Registry of renal denervation in a real world patient population with uncontrolled hypertension. J Am Coll Cardiol. 2016;68(18S):B308. doi: 10.1016/j.jacc.2016.09.791.CrossRefGoogle Scholar
  69. 69.
    Warchol-Celinska E, Januszewicz A, Prejbisz A, Kadziela J. Renal denervation after the symplicity HTN-3 trial. Postepy Kardiol Interwencyjnej. 2014;10(2):75–7. doi: 10.5114/pwki.2014.43509.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rohrwasser A, Morgan T, Dillon HF, Zhao L, Callaway CW, Hillas E, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension. 1999;34(6):1265–74.CrossRefPubMedGoogle Scholar
  71. 71.
    Liu L, Gonzalez AA, McCormack M, Seth DM, Kobori H, Navar LG, et al. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol. 2011;301(6):F1195–201. doi: 10.1152/ajprenal.00339.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Song K, Stuart D, Abraham N, Wang F, Wang S, Yang T, et al. Collecting duct renin does not mediate DOCA-salt hypertension or renal injury. PLoS One. 2016;11(7):e0159872. doi: 10.1371/journal.pone.0159872.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Malik KU, Jennings BL, Yaghini FA, Sahan-Firat S, Song CY, Estes AM, et al. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat. 2012;98(3–4):69–74. doi: 10.1016/j.prostaglandins.2011.12.003.CrossRefPubMedGoogle Scholar
  74. 74.
    Harrison D. Sy 17-2 inflammation, immunity and hypertension. J Hypertens. 2016;34(Suppl 1- ISH 2016 Abstract Book):e535. doi: 10.1097/01.hjh.0000501473.77203.33.CrossRefPubMedGoogle Scholar
  75. 75.
    •• Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010;107(2):263–70. doi: 10.1161/CIRCRESAHA.110.217299. This study examines the role of the immune system in the development of hypertension and the necessity of T cells to disease pathogenesis CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 2014;20(2):281–94. doi: 10.1089/ars.2012.4918.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. doi: 10.1084/jem.20070657.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol. 2016;173(4):752–65. doi: 10.1111/bph.13230.CrossRefPubMedGoogle Scholar
  79. 79.
    Youn JC. Sy 17-3 role of cmv induced T cell senescence in the pathophysiology of cardiovascular disease. J Hypertens. 2016;34(Suppl 1- ISH 2016 Abstract Book):e535. doi: 10.1097/01.hjh.0000501474.77203.fd.CrossRefPubMedGoogle Scholar
  80. 80.
    Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 1998;39(1):77–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental Therapeutics, School of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Neurosciences Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations