A Review of the Genetics of Hypertension with a Focus on Gene-Environment Interactions

  • RJ WakenEmail author
  • Lisa de las Fuentes
  • D.C. Rao
Novel Treatments for Hypertension (T Unger, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Novel Treatments for Hypertension


Purpose of Review

Here, we discuss the interpretation and modeling of gene-environment interactions in hypertension-related phenotypes, with a focus on the necessary assumptions and possible challenges.

Recent Findings

Recently, small cohort studies have discovered several novel genetic variants associated with hypertension-related phenotypes through modeling gene-environment interactions. Several consortia-based meta-analytic efforts have uncovered many novel genetic variants in hypertension without modeling interaction terms, giving promise to future meta-analytic efforts that incorporate gene-environment interactions.


Heritability studies and genome-wide association studies have established that hypertension, a prevalent cardiovascular disease, has a genetic component that may be modulated by the environment (such as lifestyle factors). This review includes a discussion of known genetic associations for hypertension/blood pressure, including those resulting from the incorporation of gene-environmental interaction modeling.


Genetics of hypertension Gene-environment Phenotypes Cardiovascular disease 


Compliance with Ethical Standards

Conflict of Interest

Drs. Waken1, de las Fuentes, and Rao declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11906_2017_718_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)
11906_2017_718_MOESM2_ESM.xlsx (39 kb)
ESM 2 (XLSX 39 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. doi: 10.1016/S0140-6736(12)61728-0.CrossRefPubMedGoogle Scholar
  2. 2.
    Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011.Google Scholar
  3. 3.
    Gaziano TA, Bitton A, Anand S, et al. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72–115. doi: 10.1016/j.cpcardiol.2009.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tobacco killing in low-income and middle-income countries. Lancet. 2012;379(9822):1172. doi: 10.1016/S0140-6736 (12)60492-9.
  5. 5.
    James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Mozaffarian D, Benjamin EJ, Go AS, et al. American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–e360.CrossRefPubMedGoogle Scholar
  8. 8.
    Haffner SM, Mitchell BD, Valdez RA, et al. Eight-year incidence of hypertension in Mexican-Americans and non-Hispanic whites: the San Antonio heart study. Am J Hypertension. 1992;5:147–53.CrossRefGoogle Scholar
  9. 9.
    Snieder H, Harshfield GA, Treiber FA. Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension. 2003;41:1196–201.CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng J, Rao DC, Shi G. An update on genome-wide association studies of hypertension. Appl Inform. 2015;2:10. doi: 10.1186/s40535-015-0013-7.CrossRefGoogle Scholar
  11. 11.
    Hottenga JJ, Boomsma DI, Kupper N, et al. Heritability and stability of resting blood pressure. Twin Res Hum Genet. 2005;8:499–508.CrossRefPubMedGoogle Scholar
  12. 12.
    Levy D, Larson MG, Benjamin EJ, et al. Framingham Heart Study 100k Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genetics. 2007;8:S3.CrossRefGoogle Scholar
  13. 13.
    Miall WE, Oldham PD. The hereditary factor in arterial blood pressure. BMJ. 1963;1:75–80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fox ER, Young JH, Li Y, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet. 2011;20(11):2273–84. doi: 10.1093/hmg/ddr092.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    • Ehret GB, Ferreira T, Chasman DI, et al. The genetics of blood pressure regulation and its target organs from association studies in 342415 individuals. Nat Genet. 2016;48(10):1171–84. doi: 10.1038/ng.3667. This paper is one of four recent genome wide association studies to uncover a large number of genetic loci associated with BP measurements through meta-analysis, contributing 66 newly discovered and validated genetic variants. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    • Surendran P, Drenos F, Young R, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48(10):1151–61. doi: 10.1038/ng.3654. This paper is one of four recent genome wide association studies to uncover a large number of genetic loci associated with BP measurements through meta-analysis, contributing 49 newly discovered and validated genetic variants. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    • Liu C, Kraja AT, Smith JA, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48(10):1162–70. doi: 10.1038/ng.3660. This paper is one of four recent genome wide association studies to uncover a large number of genetic loci associated with BP measurements through meta-analysis, contributing 21 newly discovered and validated genetic variants. CrossRefPubMedGoogle Scholar
  18. 18.
    •• Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. doi: 10.1038/nature08494. This paper discusses the missing heritability issue, and gives strategies (one of which being the investigation of gene-environment interaction) for addressing this issue CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang K, Weder AB, Eskin E, O’Connor DT. Genome-wide case/control studies in hypertension: only the ‘tip of the iceberg’. J Hypertens. 2010;28:1115–23.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao D, Qi Y, Zheng Z, et al. Dietary factors associated with hypertension. Nat Rev Cardiol. 2011 Jul 5;8(8):456–65. doi: 10.1038/nrcardio.2011.75.CrossRefPubMedGoogle Scholar
  22. 22.
    Boutcher YN, Boutcher SH. Exercise intensity and hypertension: what’s new? J Hum Hypertens. 2016; doi: 10.1038/jhh.2016.62.PubMedGoogle Scholar
  23. 23.
    Doonan RJ, Hausvater A, Scallan C, et al. The effect of smoking on arterial stiffness. Hypertens Res. 2010;33(5):398–410. doi: 10.1038/hr.2010.25.CrossRefPubMedGoogle Scholar
  24. 24.
    Siemiatycki J, Thomas DC. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol. 1981;10:383–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Simino J, Shi G, Bis JC, et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet. 2014;95(1):24–38. doi: 10.1016/j.ajhg.2014.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pausova Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):173–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Simino J, Sung YJ, Kume R, et al. Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9. Front Genet. 2013;4:277. doi: 10.3389/fgene.2013.00277.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim YK, Kim Y, Hwang MY, et al. Identification of a genetic variant at 2q12.1 associated with blood pressure in East-Asians by genome-wide scan including gene-environment interactions. BMC Medical Genetics. 2014;15:65. doi: 10.1186/1471-2350-15-65.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sung YJ, de Las FL, Schwander KL, et al. Gene–smoking interactions identify several novel blood pressure loci in the Framingham heart study. Am J Hypertens. 2014;28(3):343–54. doi: 10.1093/ajh/hpu149.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Basson J, Sung YJ, de las Fuentes L, et al. Influence of smoking status and intensity on discovery of blood pressure loci through gene-smoking interactions. Genet Epidemiol. 2015;39(6):480–8. doi: 10.1002/gepi.21904.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Basson J, Sung YJ, Schwander K, et al. Gene–education interactions identify novel blood pressure loci in the Framingham Heart Study. Am J Hypertens. 2014;27(3):431–44. doi: 10.1093/ajh/hpt283.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Li C, He J, Chen J, et al. Genome-wide gene-sodium interaction analyses on blood pressure: the genetic epidemiology network of salt-sensitivity study. Hypertension. 2016;68(2):348–55. doi: 10.1161/HYPERTENSIONAHA.115.06765. This paper identifies three genome-wide significant loci (and five loci with promising effect sizes) in a small cohort investigating gene-environment interactions associated with blood pressure. CrossRefPubMedGoogle Scholar
  33. 33.
    • Peterson RA, Brown SP. On the use of beta coefficients in meta-analysis. J Appl Psychol. 2005a;90:175–81. This paper lays the foundation for meta-analytic procedures for genome-wide association studies to investigate gene-environment interactions with a working application in type 2 diabetes research. CrossRefPubMedGoogle Scholar
  34. 34.
    Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet. 2010;11(4):259–72. doi: 10.1038/nrg2764.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cox D. Interaction. International Statistical Review/Revue Internationale De Statistique. 1984;52(1):1–24. doi: Google Scholar
  36. 36.
    Ottman R. An epidemiologic approach to gene-environment interaction. Genet Epidemiol. 1990;7(3):177. doi: 10.1002/gepi.1370070302.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98. doi: 10.1038/nrg1578.CrossRefPubMedGoogle Scholar
  38. 38.
    Engelman CD, Baurley JW, Chiu Y-F, et al. Detecting gene-environment interactions in genome-wide association data. Genet Epidemiol. 2009;33(Suppl 1):68–73. doi: 10.1002/gepi.20475.CrossRefGoogle Scholar
  39. 39.
    Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet. 2005;6:521–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Dudbridge F, Fletcher O. Gene-environment dependence creates spurious Gene-environment interaction. Am J Hum Genet. 2014;95(3):301–7. doi: 10.1016/j.ajhg.2014.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    García-Closas M, Thompson WD, Robins JM. Differential misclassification and the assessment of gene-environment interactions in case-control studies. Am J Epidemiol. 1998;1475:426–33.CrossRefGoogle Scholar
  42. 42.
    Hein R, Beckmann L, Chang-Claude J. Sample size requirements for indirect association studies of gene-environment interactions (G×E). Genet Epidemiol. 2008;32:235–45.CrossRefPubMedGoogle Scholar
  43. 43.
    Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004. doi: 10.1111/j.0006-341X.1999.00997.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am J Epidemiol. 2006;164:609–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Becker BJ, Wu M-J. The synthesis of regression slopes in meta-analysis. Stat Sci. 2007;22(3):414–29. doi: 10.1214/07-STS243. CrossRefGoogle Scholar
  46. 46.
    Ashenfelter O, Harmon C, Oosterbeek H. A review of estimates of the schooling/earnings relationship, with tests for publication bias. National Bureau of Economic Research Working Paper Series. 2000;7457 doi: 10.3386/w7457.
  47. 47.
    Peterson RA, Brown SP. On the use of beta coefficients in meta-analysis. J Appl Psychol. 2005b;90:175–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Doucouliagos H, Paldam M. Aid effectiveness on accumulation: a meta study. Kyklos. 2006;59(2):227–54. doi: 10.1111/j.1467-6435.2006.00326.x.CrossRefGoogle Scholar
  49. 49.
    Adeyemo A, Gerry N, Chen G, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5(7):e1000564. doi: 10.1371/journal.pgen.1000564.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34. doi: 10.1038/ng.357.CrossRefPubMedGoogle Scholar
  51. 51.
    Franceschini N, Fox E, Zhang Z, et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet. 2013;93(3):545–54. doi: 10.1016/j. ajhg.2013.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ganesh SK, Tragante V, Guo W, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013;22(8):1663–78. doi: 10.1093/hmg/dds555.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ganesh SK, Chasman DI, Larson MG, et al. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am J Hum Genet. 2014;95(1):49–65. doi: 10.1016/j.ajhg.2014.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ho JE, Levy D, Rose L, et al. Discovery and replication of novel blood pressure genetic loci in the Women’s Genome Health Study. J Hypertens. 2011;29(1):62–9. doi: 10.1097/HJH.0b013e3283406927.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    • Hoffman TJ, Ehret GB, Nandakuma P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;47(1):54–64. doi: 10.1038/ng.3715. This paper is one of four recent genome wide association studies to uncover a large number of genetic loci associated with BP measurements through meta-analysis, contributing 316 newly discovered loci. Google Scholar
  56. 56.
    Hong KW, Jin HS, Lim JE, et al. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J Hum Genet. 2010;55(6):336–41. doi: 10.1038/jhg.2010.31.CrossRefPubMedGoogle Scholar
  57. 57.
    Hong KW, Min H, Heo BM, et al. Recapitulation of genome-wide association studies on pulse pressure and mean arterial pressure in the Korean population. J Hum Genet. 2012;57(6):391–3. doi: 10.1038/jhg.2012.31.CrossRefPubMedGoogle Scholar
  58. 58.
    International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. doi: 10.1038/nature10405.CrossRefGoogle Scholar
  59. 59.
    Johnson AD, Newton-Cheh C, Chasman DI, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011a;57(5):903–10. doi: 10.1161/HYPERTENSIONAHA.110.158667.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Johnson T, Gaunt TR, Newhouse SJ, et al. Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011b;89(6):688–700. doi: 10.1016/j.ajhg.2011.10.013.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kato N, Takeuchi F, Tabara Y, et al. Meta- analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8. doi: 10.1038/ng.834.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kelly TN, Takeuchi F, Tabara Y, et al. Genome-wide association study meta-analysis reveals transethnic replication of mean arterial and pulse pressure loci. Hypertension. 2013;62(5):853–9. doi: 10.1161/HYPERTENSIONAHA.113.01148.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87. doi: 10.1038/ng.384.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lin Y, Lai X, Chen B, et al. Genetic variations in CYP17A1, CACNB2 and PLEKHA7 are associated with blood pressure and/or hypertension in She ethnic minority of China. Atherosclerosis. 2011;219(2):709–14. doi: 10.1016/j.atherosclerosis.2011.09.006.CrossRefPubMedGoogle Scholar
  65. 65.
    Lu X, Wang L, Lin X, et al. Genome- wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet. 2014;24(3):865–74. doi: 10.1093/hmg/ddu478.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76. doi: 10.1038/ng.361.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Org E, Eyheramendy S, Juhanson P, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18(12):2288–96. doi: 10.1093/hmg/ddp135.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Padmanabhan S, Melander O, Johnson T, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10):e1001177. doi: 10.1371/journal.pgen.1001177.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Qi Y, Zhao H, Wang Y, et al. Replication of the top 10 most significant polymorphisms from a large blood pressure genome-wide association study of northeastern Han Chinese East Asians. Hypertens Res. 2014;37(2):134–8. doi: 10.1038/hr.2013.132.CrossRefPubMedGoogle Scholar
  70. 70.
    Salvi E, Kutalik Z, Glorioso N, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59(2):248–55. doi: 10.1161/HYPERTENSIONAHA.111.181990.CrossRefPubMedGoogle Scholar
  71. 71.
    Tabara Y, Kohara K, Kita Y, et al. Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension. 2010;56(5):973–80. doi: 10.1161/ HYPERTENSIONAHA.110.153429.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Takeuchi F, Isono M, Katsuya T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121(21):2302–9. doi: 10.1161/CIRCULATIONAHA.109.904664.CrossRefPubMedGoogle Scholar
  73. 73.
    Tomaszewski M, Debiec R, Braund PS, et al. Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array. Hypertension. 2010;56(6):1069–76. doi: 10.1161/ HYPERTENSIONAHA.110.155721.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tragante V, Barnes MR, Ganesh SK, et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood- pressure-related loci. Am J Hum Genet. 2014;94(3):349–60. doi: 10.1016/j.ajhg.2013.12.016.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wain LV, Verwoert GC, O’Reilly PF, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005–11. doi: 10.1038/ng.922.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wang Y, O’Connell JR, McArdle PF, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106(1):226–31. doi: 10.1073/pnas.0808358106.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang Y, Zhang Y, Li Y, et al. Common variants in the ATP2B1 gene are associated with hypertension and arterial stiffness in Chinese population. Mol Biol Rep. 2013;40(2):1867–73. doi: 10.1007/s11033-012-2242-3.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhu X, Young JH, Fox E, et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum Mol Genet. 2011;20(11):2285–95. doi: 10.1093/hmg/ddr113.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    VanderWeele TJ, Ko Y-A, Mukherjee B. Environmental confounding in gene-environment interaction studies. Am J Epidemiol. 2013;178(1):144–52. doi: 10.1093/aje/kws439.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Keller MC. Gene-by-environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry. 2014;75(1) doi: 10.1016/j.biopsych.2013.09.006.
  81. 81.
    Gordon D, Finch SJ. Factors affecting statistical power in the detection of genetic association. J Clin Investig. 2005;115(6):1408–18. doi: 10.1172/JCI24756.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lam AC, Schouten M, Aulchenko YS, et al. Rapid and robust association mapping of expression quantitative trait loci. BMC Proc. 2007;1(Suppl 1):S144.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tabangin ME, Woo JG, Martin LJ. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc. 2009;3(Suppl 7):S41. doi: 10.1186/1753-6561-3-S7-S41.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Warren HR, Evangelou E, Cabrera CP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017; doi: 10.1038/ng.3768.Google Scholar
  85. 85.
    Aulchenko YS, Struchalin MV, van Duijn CM. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics. 2010;11:134. doi: 10.1186/1471-2105-11-134.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of BiostatisticsWashington University in St. Louis, School of MedicineSt. LouisUSA
  2. 2.Division of Cardiology, Department of MedicineSt. LouisUSA

Personalised recommendations