Predictors of Renal Denervation Efficacy in the Treatment of Resistant Hypertension

  • Tatiana M. RippEmail author
  • Victor F. Mordovin
  • Stanislav E. Pekarskiy
  • Tamara R. Ryabova
  • Marina V. Zlobina
  • Andrei E. Baev
  • Yana Anfinogenova
  • Sergey V. Popov
Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Device-Based Approaches for Hypertension


The aims of the study were to evaluate the effects of renal sympathetic denervation (RSD) on the heart and to identify the predictors of RSD efficacy in patients with resistant arterial hypertension. The study comprised 60 RSD patients (54.6 ± 9.5 years) who received full-dose antihypertensive therapy (4.1 drugs) including diuretics. Initially, 58.6 % of patients had abnormal left ventricular (LV) diastolic function. All patients received echocardiography before and 24 weeks after RSD. Renal sympathetic denervation was achieved through the endovascular radiofrequency ablation (RFA) of the renal arteries. Drug therapy continued for the entire period of observation. After RSD, all patients were retrospectively assigned to two groups: group 1 comprised patients (n = 22; 36.7 %) in whom the myocardial mass (MM) of the left ventricle decreased by more than 10 g after RSD; group 2 comprised patients (n = 38; 63.3 %) in whom LV MM increased or decreased by less than 10 g. Anthropometry, arterial blood pressure, heart rate, therapy, and LV end-diastolic dimensions (EDD) were comparable in these groups. After RSD, the values of office blood pressure significantly decreased and MM regressed by more than 10 g in 36.7 % of patients; LV diastolic function normalized in 31 % of patients, and diastolic dysfunction improved in 14 % of patients. The study found the associations between the initial LV wall dimensions and LV MM changes. Unlike LV EDD, arterial blood pressure, or heart rate, the initial values of LV wall thickness predicted LV MM regress. Trial registration: #NCT01499810


Hypertension Renal denervation RSD Heart Left ventricular hypertrophy Diastolic function Echocardiography 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26. doi: 10.1161/CIRCULATIONAHA.108.189141.CrossRefPubMedGoogle Scholar
  2. 2.
    Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357. doi: 10.1097/ Scholar
  3. 3.
    Urban D, Ewen S, Ukena C, Linz D, Böhm M, Mahfoud F. Treating resistant hypertension: role of renal denervation. Integr Blood Press Control. 2007;6:119–28.Google Scholar
  4. 4.
    Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42. doi: 10.1161/CIRCULATIONAHA.111.068064.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension. 2009;54(4):690–7. doi: 10.1161/HYPERTENSIONAHA.108.119883.CrossRefPubMedGoogle Scholar
  6. 6.
    Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(4 Pt 2):724–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Cuspidi C, Sala C, Negri F, Mancia G, Morganti A, Italian Society of Hypertension. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26(6):343–9. doi: 10.1038/jhh.2011.104.CrossRefPubMedGoogle Scholar
  9. 9.
    Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64. doi: 10.1097/HJH.0b013e328330b845.CrossRefPubMedGoogle Scholar
  10. 10.
    De Caterina AR, Leone AM. Why beta-blockers should not be used as first choice in uncomplicated hypertension. Am J Cardiol. 2010;10:1433–8. doi: 10.1016/j.amjcard.2009.12.068.CrossRefGoogle Scholar
  11. 11.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. doi: 10.1016/S0140-6736(09)60566-3.CrossRefPubMedGoogle Scholar
  12. 12.
    Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. doi: 10.1016/S0140-6736(10)62039-9.CrossRefGoogle Scholar
  13. 13.
    Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6. doi: 10.1161/CIRCULATIONAHA.110.991869.CrossRefPubMedGoogle Scholar
  14. 14.
    Modolo R, de Faria AP, Almeida A, Moreno H. Resistant or refractory hypertension: are they different? Curr Hypertens Rep. 2014;16(10):485. doi: 10.1007/s11906-014-0485-1.CrossRefPubMedGoogle Scholar
  15. 15.
    Guo H, Xiao Q. Clinical efficacy of spironolactone for resistant hypertension: a meta analysis from randomized controlled clinical trials. Int J Clin Exp Med. 2015;8(5):7270–8.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Tan LH, Li XG, Guo YZ, Tang XH, Yang K, Jiang WH. Effect of renal sympathetic denervation on left ventricular hypertrophy and inflammatory factors in spontaneously hypertensive rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2013;42(5):550–5.PubMedGoogle Scholar
  17. 17.
    Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9. doi: 10.1016/j.jacc.2011.11.034.CrossRefPubMedGoogle Scholar
  18. 18.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.CrossRefPubMedGoogle Scholar
  19. 19.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33. doi: 10.1016/j.echo.2008.11.023.CrossRefPubMedGoogle Scholar
  21. 21.
    Linz D, Hohl M, Schütze J, Mahfoud F, Speer T, Linz B, et al. Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens. 2015;28(2):256–65. doi: 10.1093/ajh/hpu123.CrossRefPubMedGoogle Scholar
  22. 22.
    Dai Z, Yu S, Zhao Q, Meng Y, He H, Tang Y, et al. Renal sympathetic denervation suppresses ventricular substrate remodelling in a canine high-rate pacing model. EuroIntervention. 2014;10(3):392–9. doi: 10.4244/EIJV10I3A65.CrossRefPubMedGoogle Scholar
  23. 23.
    Schirmer SH, Sayed MM, Reil JC, Ukena C, Linz D, Kindermann M, et al. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2014;63(18):1916–23. doi: 10.1016/j.jacc.2013.10.073.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tatiana M. Ripp
    • 1
    Email author
  • Victor F. Mordovin
    • 1
  • Stanislav E. Pekarskiy
    • 1
  • Tamara R. Ryabova
    • 1
  • Marina V. Zlobina
    • 1
  • Andrei E. Baev
    • 1
  • Yana Anfinogenova
    • 1
    • 2
  • Sergey V. Popov
    • 1
  1. 1.Federal State Budgetary Scientific Institution “Research Institute for Cardiology”TomskRussia
  2. 2.Institute of Physics and TechnologyNational Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations