Clinical Significance of Endothelial Dysfunction in Essential Hypertension

  • Eugenia Gkaliagkousi
  • Eleni Gavriilaki
  • Areti Triantafyllou
  • Stella Douma
Pathogenesis of Hypertension (W Elliott, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Hypertension


The endothelium is recognized as a major determinant of vascular physiology and pathophysiology. Over the last few decades, a plethora of studies have implicated endothelial dysfunction in the progression of atherosclerosis and the subclinical target organ damage observed in essential hypertension. However, the clinical significance of diagnosing endothelial dysfunction in patients with essential hypertension remains under investigation. Although a number of vascular and non-vascular markers of endothelial dysfunction have been proposed, there is an ongoing quest for a marker in the clinical setting that is optimal, inexpensive, and reproducible. In addition, endothelial dysfunction emerges as a promising therapeutic target of agents that are readily available in clinical practice. In this context, a better understanding of its role in essential hypertension becomes of great importance. Here, we aim to investigate the clinical significance of endothelial dysfunction in essential hypertension by accumulating novel data on (a) early diagnosis using robust markers with prognostic value in cardiovascular risk prediction, (b) the association of endothelial dysfunction with subclinical vascular organ damage, and (c) potential therapeutic targets.


Endothelial dysfunction ADMA FMD Treatment Essential hypertension 



Nitric oxide


Endothelial nitric oxide synthase






Asymmetrical dimethylarginine


Monocyte-platelet aggregates


Blood pressure


Endothelial microparticles


Endothelial progenitor cells


Quantitative coronary angiography


Magnetic resonance imaging


Positron emission tomography


Forearm blood flow


Venous occlusion plethysmography


Flow-mediated dilation


Peripheral arterial tonometry


Laser Doppler flowmetry


Pulse wave velocity


Renin-angiotensin system


Angiotensin-converting enzyme inhibitors


Angiotensin receptor blockers


Compliance with Ethics Guidelines

Conflict of Interest

Drs. Gkaliagkousi, Gavriilaki, Triantafyllou, and Douma declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Fishman AP. Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci. 1982;401:1–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–51.CrossRefPubMedGoogle Scholar
  3. 3.••
    Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5. A innovative study where Celermajer et al described the first non-invasive methodology of endothelial function assessment.CrossRefPubMedGoogle Scholar
  4. 4.
    Dharmashankar K, Widlansky ME. Vascular endothelial function and hypertension: insights and directions. Curr Hypertension Rep. 2010;12(6):448–55.CrossRefGoogle Scholar
  5. 5.
    Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res. 2007;101(7):654–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988;153(3):1251–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Piazza M, Futrega K, Spratt DE, Dieckmann T, Guillemette JG. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation. Biochemistry. 2012;51(17):3651–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Fleming I, Bauersachs J, Busse R. Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res. 1997;34(3):165–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Gkaliagkousi E, Douma S, Zamboulis C, Ferro A. Nitric oxide dysfunction in vascular endothelium and platelets: role in essential hypertension. J Hypertens. 2009;27(12):2310–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res. 1999;43(3):532–41.CrossRefPubMedGoogle Scholar
  12. 12.
    List BM, Klosch B, Volker C, Gorren AC, Sessa WC, Werner ER, et al. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J. 1997;323(Pt 1):159–65.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, et al. Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension. 2006;47(1):87–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Gkaliagkousi E, Passacquale G, Douma S, Zamboulis C, Ferro A. Platelet activation in essential hypertension: implications for antiplatelet treatment. Am J Hypertens. 2010;23(3):229–36.CrossRefPubMedGoogle Scholar
  15. 15.•
    Gkaliagkousi E, Corrigall V, Becker S, de Winter P, Shah A, Zamboulis C, et al. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur Heart J. 2009;30(24):3048–54. An original study linking decreased NO bioavailability with platelet activation in essential hypertension.CrossRefPubMedGoogle Scholar
  16. 16.
    Gkaliagkousi E, Gavriilaki E, Yiannaki E, Markala D, Papadopoulos N, Triantafyllou A, et al. Platelet activation in essential hypertension during exercise: pre- and post-treatment changes with an angiotensin II receptor blocker. Am J Hypertens. 2014;27(4):571–8.CrossRefPubMedGoogle Scholar
  17. 17.••
    Lekakis J, Abraham P, Balbarini A, Blann A, Boulanger CM, Cockcroft J, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Working Groups Epidemiol Prev Cardiac Rehabil Exerc Physiol. 2011;18(6):775–89. A position statement summarising current markers of endothelial dysfunction.Google Scholar
  18. 18.
    Horowitz JD, Heresztyn T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Anal Technol Biomed Life Sci. 2007;851(1-2):42–50.CrossRefGoogle Scholar
  19. 19.
    Perticone F, Sciacqua A, Maio R, Perticone M, Maas R, Boger RH, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol. 2005;46(3):518–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Juonala M, Viikari JS, Alfthan G, Marniemi J, Kahonen M, Taittonen L, et al. Brachial artery flow-mediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation. 2007;116(12):1367–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Boger RH, Maas R, Schulze F, Schwedhelm E. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality--an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res Off J Italian Pharmacol Soc. 2009;60(6):481–7.CrossRefGoogle Scholar
  22. 22.•
    Boger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119(12):1592–600. A large community-based study correlating ADMA with cardiovascular morbidity and mortality.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011;31(1):27–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension. 2006;48(2):180–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J. 2014;35(42):2972–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753–67.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Muiesan ML, Salvetti M, Monteduro C, Corbellini C, Guelfi D, Rizzoni D, et al. Flow-mediated dilatation of the brachial artery and left ventricular geometry in hypertensive patients. J Hypertens. 2001;19(3 Pt 2):641–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Clarkson P, Celermajer DS, Donald AE, Sampson M, Sorensen KE, Adams M, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol. 1996;28(3):573–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993;88(5 Pt 1):2149–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994;24(6):1468–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Yeboah J, Crouse JR, Bluemke DA, Lima JA, Polak JF, Burke GL, et al. Endothelial dysfunction is associated with left ventricular mass (assessed using MRI) in an adult population (MESA). J Hum Hypertens. 2011;25(1):25–31.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation. 2007;115(18):2390–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Huang AL, Silver AE, Shvenke E, Schopfer DW, Jahangir E, Titas MA, et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 2007;27(10):2113–9.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Hafner F, Kieninger A, Meinitzer A, Gary T, Froehlich H, Haas E, et al. Endothelial dysfunction and brachial intima-media thickness: long term cardiovascular risk with claudication related to peripheral arterial disease: a prospective analysis. PLoS One. 2014;9(4):e93357.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol. 2002;40(3):505–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Takishima I, Nakamura T, Hirano M, Kitta Y, Kobayashi T, Fujioka D, et al. Predictive value of serial assessment of endothelial function in chronic heart failure. Int J Cardiol. 2012;158(3):417–22.CrossRefPubMedGoogle Scholar
  40. 40.•
    Yang Y, Xu JZ, Wang Y, Tang XF, Gao PJ. Brachial flow-mediated dilation predicts subclinical target organ damage progression in essential hypertensive patients: a 3-year follow-up study. J Hypertens. 2014;32(12):2393–400. discussion 2400. A prospective study implicating FMD as an early marker of subclinical target organ damage in patients with essential hypertension.CrossRefPubMedGoogle Scholar
  41. 41.
    Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54(2):388–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Ott C, Raff U, Harazny JM, Michelson G, Schmieder RE. Central pulse pressure is an independent determinant of vascular remodeling in the retinal circulation. Hypertension. 2013;61(6):1340–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Triantafyllou A, Anyfanti P, Gavriilaki E, Zabulis X, Gkaliagkousi E, Petidis K, et al. Association between retinal vessel caliber and arterial stiffness in a population comprised of normotensive to early-stage hypertensive individuals. Am J Hypertens. 2014;27(12):1472–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR. Nitric oxide regulates local arterial distensibility in vivo. Circulation. 2002;105(2):213–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Schmitt M, Avolio A, Qasem A, McEniery CM, Butlin M, Wilkinson IB, et al. Basal NO locally modulates human iliac artery function in vivo. Hypertension. 2005;46(1):227–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Stewart AD, Millasseau SC, Kearney MT, Ritter JM, Chowienczyk PJ. Effects of inhibition of basal nitric oxide synthesis on carotid-femoral pulse wave velocity and augmentation index in humans. Hypertension. 2003;42(5):915–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Nigam A, Mitchell GF, Lambert J, Tardif JC. Relation between conduit vessel stiffness (assessed by tonometry) and endothelial function (assessed by flow-mediated dilatation) in patients with and without coronary heart disease. Am J Cardiol. 2003;92(4):395–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.CrossRefPubMedGoogle Scholar
  49. 49.
    Kobayashi K, Akishita M, Yu W, Hashimoto M, Ohni M, Toba K. Interrelationship between non-invasive measurements of atherosclerosis: flow-mediated dilation of brachial artery, carotid intima-media thickness and pulse wave velocity. Atherosclerosis. 2004;173(1):13–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Koivistoinen T, Virtanen M, Hutri-Kahonen N, Lehtimaki T, Jula A, Juonala M, et al. Arterial pulse wave velocity in relation to carotid intima-media thickness, brachial flow-mediated dilation and carotid artery distensibility: the Cardiovascular Risk in Young Finns Study and the Health 2000 Survey. Atherosclerosis. 2012;220(2):387–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Horvath T, Pinter A, Kollai M. Carotid artery stiffness is not related to endothelial function in young healthy subjects. Autonomic Neurosci Basic Clin. 2012;166(1-2):85–8.CrossRefGoogle Scholar
  52. 52.
    Dubin R, Owens C, Gasper W, Ganz P, Johansen K. Associations of endothelial dysfunction and arterial stiffness with intradialytic hypotension and hypertension. Hemodial Int Int Symp Home Hemodial. 2011;15(3):350–8.CrossRefGoogle Scholar
  53. 53.
    Cakar M, Bulucu F, Karaman M, Ay SA, Kurt O, Balta S, Demirkol S, Sarlak H, Akhan M, Altun B et al: Asymmetric Dimethylarginine and Augmentation Index in Newly Diagnosed Patients With Hypertension. Angiology 2013Google Scholar
  54. 54.
    Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27(3):461–7.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Gkaliagkousi E, Gavriilaki E, Nikolaidou B, Chatzopoulou F, Anyfanti P, Triantafyllou A, Petidis K, Zamboulis C, Douma S: Association Between Cardiotrophin 1 Levels and Central Blood Pressure in Untreated Patients With Essential Hypertension. American journal of hypertension 2014.Google Scholar
  56. 56.
    Gkaliagkousi E, Doumas M, Gavriilaki E, Triantafyllou A, Vogiatzis K, Anyfanti P, et al. Elevated levels of MMP-9 in untreated patients with stage I essential hypertension. Clin Exp Hypertens. 2012;34(8):561–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Michelson G, Warntges S, Harazny J, Oehmer S, Delles C, Schmieder RE. Effect of nos inhibition on retinal arterial and capillary circulation in early arterial hypertension. Retina. 2006;26(4):437–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Hemminki V, Laakso J, Kahonen M, Turjanmaa V, Uusitalo H, Lehtimaki T, et al. Plasma asymmetric dimethylarginine and retinal vessel diameters in middle-aged men. Metab Clin Exp. 2007;56(10):1305–10.CrossRefPubMedGoogle Scholar
  59. 59.
    Tsioufis C, Dimitriadis K, Andrikou E, Thomopoulos C, Tsiachris D, Stefanadi E, et al. ADMA, C-reactive protein, and albuminuria in untreated essential hypertension: a cross-sectional study. Am J Kidney Dis Off J National Kidney Found. 2010;55(6):1050–9.CrossRefGoogle Scholar
  60. 60.
    Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther. 2013;140(3):239–57.CrossRefPubMedGoogle Scholar
  61. 61.•
    Shatanawi A, Romero MJ, Iddings JA, Chandra S, Umapathy NS, Verin AD, et al. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol. 2011;300(5):C1181–1192. A recent review with a detailed description of possible therapeutic targets of endothelial dysfunction in patients at increased cardiovascular risk.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Endtmann C, Ebrahimian T, Czech T, Arfa O, Laufs U, Fritz M, et al. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration. Hypertension. 2011;58(3):394–403.CrossRefPubMedGoogle Scholar
  63. 63.
    He HL, Liu L, Chen QH, Cai SX, Han JB, Hu SL, et al. MSCs modified with ACE2 restore endothelial function following LPS challenge by inhibiting the activation of RAS. J Cell Physiol. 2015;230(3):691–701.CrossRefPubMedGoogle Scholar
  64. 64.
    Schlimmer N, Kratz M, Bohm M, Baumhakel M. Telmisartan, ramipril and their combination improve endothelial function in different tissues in a murine model of cholesterol-induced atherosclerosis. Br J Pharmacol. 2011;163(4):804–14.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Yung LM, Wong WT, Tian XY, Leung FP, Yung LH, Chen ZY, et al. Inhibition of renin-angiotensin system reverses endothelial dysfunction and oxidative stress in estrogen deficient rats. PLoS One. 2011;6(3):e17437.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Nemoto S, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats. Am J Physiol Heart Circ Physiol. 2011;301(6):H2383–2394.CrossRefPubMedGoogle Scholar
  67. 67.
    Tian S, Ge X, Wu K, Yang H, Liu Y. Ramipril protects the endothelium from high glucose-induced dysfunction through CaMKKbeta/AMPK and heme oxygenase-1 activation. J Pharmacol Exp Rapeutics. 2014;350(1):5–13.CrossRefGoogle Scholar
  68. 68.
    Toba H, Wang J, Ohigashi M, Kobara M, Nakata T. Telmisartan protects against vascular dysfunction with peroxisome proliferator-activated receptor-gamma activation in hypertensive 5/6 nephrectomized rats. Pharmacology. 2013;92(5-6):265–75.CrossRefPubMedGoogle Scholar
  69. 69.
    Marampon F, Gravina GL, Scarsella L, Festuccia C, Lovat F, Ciccarelli C, et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis. J Hypertens. 2013;31(10):1972–83.CrossRefPubMedGoogle Scholar
  70. 70.
    Siragusa M, Sessa WC. Telmisartan exerts pleiotropic effects in endothelial cells and promotes endothelial cell quiescence and survival. Arterioscler Thromb Vasc Biol. 2013;33(8):1852–60.CrossRefPubMedGoogle Scholar
  71. 71.
    Mak IT, Landgraf KM, Chmielinska JJ, Weglicki WB. Angiotensin II promotes iron accumulation and depresses PGI(2) and NO synthesis in endothelial cells: effects of losartan and propranolol analogs. Can J Physiol Pharmacol. 2012;90(10):1413–8.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Georgescu A, Alexandru N, Andrei E, Titorencu I, Dragan E, Tarziu C, et al. Circulating microparticles and endothelial progenitor cells in atherosclerosis: pharmacological effects of irbesartan. J Thromb Haemost JTH. 2012;10(4):680–91.CrossRefPubMedGoogle Scholar
  73. 73.
    Toyama T, Sato C, Koyama K, Kasama S, Murakami J, Yamashita E, et al. Olmesartan improves coronary flow reserve of hypertensive patients using coronary magnetic resonance imaging compared with amlodipine. Cardiology. 2012;122(4):230–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Cherney DZ, Scholey JW, Jiang S, Har R, Lai V, Sochett EB, et al. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. Diabetes Care. 2012;35(11):2324–30.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Zankl AR, Ivandic B, Andrassy M, Volz HC, Krumsdorf U, Blessing E, et al. Telmisartan improves absolute walking distance and endothelial function in patients with peripheral artery disease. Clin Res cardiol Off J German Cardiac Soc. 2010;99(12):787–94.CrossRefGoogle Scholar
  76. 76.
    Terashima M, Kaneda H, Nasu K, Matsuo H, Habara M, Ito T, et al. Protective effect of telmisartan against endothelial dysfunction after coronary drug-eluting stent implantation in hypertensive patients. J Am Coll Cardiol Intv. 2012;5(2):182–90.CrossRefGoogle Scholar
  77. 77.
    Suzuki R, Fukuda N, Katakawa M, Tsunemi A, Tahira Y, Matsumoto T, et al. Effects of an angiotensin II receptor blocker on the impaired function of endothelial progenitor cells in patients with essential hypertension. Am J Hypertens. 2014;27(5):695–701.CrossRefPubMedGoogle Scholar
  78. 78.
    Cangiano E, Marchesini J, Campo G, Francolini G, Fortini C, Carra G, et al. ACE inhibition modulates endothelial apoptosis and renewal via endothelial progenitor cells in patients with acute coronary syndromes. Am J cardiovasc Drugs Drugs devices Other interv. 2011;11(3):189–98.CrossRefGoogle Scholar
  79. 79.
    Shahin Y, Khan JA, Samuel N, Chetter I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis. 2011;216(1):7–16.CrossRefPubMedGoogle Scholar
  80. 80.
    Mason RP, Jacob RF, Corbalan JJ, Kaliszan R, Malinski T. Amlodipine increased endothelial nitric oxide and decreased nitroxidative stress disproportionately to blood pressure changes. Am J Hypertens. 2014;27(3):482–8.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    He X, Zhang HL, Zhao M, Yang JL, Cheng G, Sun L, et al. Amlodipine ameliorates endothelial dysfunction in mesenteric arteries from spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2011;38(4):255–61.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhou MS, Tian R, Jaimes EA, Raij L. Combination therapy of amlodipine and atorvastatin has more beneficial vascular effects than monotherapy in salt-sensitive hypertension. Am J Hypertens. 2014;27(6):873–80.CrossRefPubMedGoogle Scholar
  83. 83.
    Okamura T, Tawa M, Geddawy A, Shimosato T, Iwasaki H, Shintaku H, et al. Effects of atorvastatin, amlodipine, and their combination on vascular dysfunction in insulin-resistant rats. J Pharmacol Sci. 2014;124(1):76–85.CrossRefPubMedGoogle Scholar
  84. 84.
    He Y, Si D, Yang C, Ni L, Li B, Ding M, et al. The effects of amlodipine and S(-)-amlodipine on vascular endothelial function in patients with hypertension. Am J Hypertens. 2014;27(1):27–31.CrossRefPubMedGoogle Scholar
  85. 85.
    Bayar E, Ilhan G, Furat C, Atik C, Arslanoglu Y, Kuran C, et al. The effect of different beta-blockers on vascular graft nitric oxide levels: comparison of nebivolol versus metoprolol. Eur J Vascular Endovascular Surg Off J Eur Soc Vasc Surg. 2014;47(2):204–8.CrossRefGoogle Scholar
  86. 86.
    Mason RP, Jacob RF, Corbalan JJ, Szczesny D, Matysiak K, Malinski T. The favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells. BMC Pharmacol Toxicol. 2013;14:48.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Doggen K, Fransen P, Lemmens K, De Keulenaer GW. Effects of nebivolol on vascular endothelial and myocardial function in diabetes mellitus. J Cardiovasc Pharmacol. 2011;58(1):56–64.CrossRefPubMedGoogle Scholar
  88. 88.
    Wang Y, Zhang M, Liu Y, Chen M. The effect of nebivolol on asymmetric dimethylarginine system in spontaneously hypertension rats. Vasc Pharmacol. 2011;54(1-2):36–43.CrossRefGoogle Scholar
  89. 89.
    Sorrentino SA, Doerries C, Manes C, Speer T, Dessy C, Lobysheva I, et al. Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional beta1-blockade. J Am Coll Cardiol. 2011;57(5):601–11.CrossRefPubMedGoogle Scholar
  90. 90.
    Zepeda RJ, Castillo R, Rodrigo R, Prieto JC, Aramburu I, Brugere S, et al. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension. Basic Clin Pharmacol Toxicol. 2012;111(5):309–16.CrossRefPubMedGoogle Scholar
  91. 91.
    Khan BV, Rahman ST, Haque T, Merchant N, Bhaheetharan S, Harris 3rd J, et al. Vascular effects of nebivolol added to hydrochlorothiazide in African Americans with hypertension and echocardiographic evidence of diastolic dysfunction: the NASAA study. J Cardiovasc Pharmacol Ther. 2012;17(3):291–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Sacco G, Evangelista S, Manzini S, Parlani M, Bigioni M. Combined antihypertensive and cardioprotective effects of nebivolol and hydrochlorothiazide in spontaneous hypertensive rats. Futur Cardiol. 2011;7(6):757–63.CrossRefGoogle Scholar
  93. 93.
    Pasini AF, Garbin U, Stranieri C, Boccioletti V, Mozzini C, Manfro S, et al. Nebivolol treatment reduces serum levels of asymmetric dimethylarginine and improves endothelial dysfunction in essential hypertensive patients. Am J Hypertens. 2008;21(11):1251–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Momi S, Caracchini R, Falcinelli E, Evangelista S, Gresele P. Stimulation of platelet nitric oxide production by nebivolol prevents thrombosis. Arterioscler Thromb Vasc Biol. 2014;34(4):820–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Vitale C, Marazzi G, Iellamo F, Spoletini I, Dall’Armi V, Fini M, et al. Effects of nebivolol or irbesartan in combination with hydrochlorothiazide on vascular functions in newly-diagnosed hypertensive patients: the NINFE (Nebivololo, Irbesartan Nella Funzione Endoteliale) study. Int J Cardiol. 2012;155(2):279–84.CrossRefPubMedGoogle Scholar
  96. 96.
    Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003;23(5):729–36.CrossRefPubMedGoogle Scholar
  97. 97.
    Reriani MK, Dunlay SM, Gupta B, West CP, Rihal CS, Lerman LO, et al. Effects of statins on coronary and peripheral endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Eur J Cardiovascular Prev Rehabil Off J Eur Soc Cardiol Working Groups Epidemiol Prev Cardiac Rehabil Exerc Physiol. 2011;18(5):704–16.Google Scholar
  98. 98.
    Wang Q, Yang M, Xu H, Yu J. Tetrahydrobiopterin improves endothelial function in cardiovascular disease: a systematic review. Evid-Based Complement Altern Med eCAM. 2014;2014:850312.Google Scholar
  99. 99.
    Porkert M, Sher S, Reddy U, Cheema F, Niessner C, Kolm P, et al. Tetrahydrobiopterin: a novel antihypertensive therapy. J Hum Hypertens. 2008;22(6):401–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eugenia Gkaliagkousi
    • 1
  • Eleni Gavriilaki
    • 1
  • Areti Triantafyllou
    • 1
  • Stella Douma
    • 1
  1. 1.3rd Department of Internal Medicine, Papageorgiou HospitalAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations