Cardiac Target Organ Damage in Hypertension: Insights from Epidemiology

  • Patrick R. Lawler
  • Pranoti Hiremath
  • Susan Cheng
Hypertension and the Heart (SD Solomon and O Vardeny, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Hypertension and the Heart

Abstract

Hypertension is an important risk factor implicated in the development of multiple common cardiac conditions, including coronary atherosclerosis, heart failure, and atrial fibrillation. Epidemiologic studies have provided insights into the shared pathogenesis of hypertension and subclinical as well as clinically evident cardiac diseases. The mechanistic common ground between chronic blood pressure elevation and cardiac disease likely begins early in life. Understanding these connections will aid ongoing efforts to identify individuals at risk, develop targeted therapeutics, and improve overall outcomes for individuals with elevated blood pressure in the population at large.

Keywords

Blood pressure Hypertension Cardiac disease Epidemiology 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.•
    Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8. This study illustrates the scope of the hypertension problem worldwide, and underscores the far-reaching and multinational implications of this global pandemic.PubMedCrossRefGoogle Scholar
  2. 2.
    Echouffo-Tcheugui JB, Batty GD, Kivimaki M, Kengne AP. Risk models to predict hypertension: a systematic review. PLoS ONE. 2013;8:e67370.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wang TJ, Gona P, Larson MG, Levy D, Benjamin EJ, Tofler GH, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension. 2007;49:432–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122:1700–6.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.•
    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9. This large genome-wide association study of systolic and diastolic blood pressure used a multi-stage design in 200,000 individuals of European descent to identify 16 novel loci associated with prevelant hypertension. Six of these loci harbored genes previously known or postulated to regulate BP (GUCY1A3–GUCY1B3, NPR3–C5orf23, ADM, FURIN–FES, GOSR2, GNAS–EDN3). Intriguingly, the other 10 were not previously implicated in BP regulation, and therefore suggest potential novel pathways.Google Scholar
  8. 8.
    Schnabel RB. Common genetic variation of blood pressure traits and their relation to end-organ damage. Circ Cardiovasc Genet. 2011;4:712–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng S, Fernandes VR, Bluemke DA, McClelland RL, Kronmal RA, Lima JA. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2009;2:191–8.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.•
    Cheng S, Xanthakis V, Sullivan LM, Lieb W, Massaro J, Aragam J, et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation. 2010;122:570–8. This study followed individuals in the Framingham Heart Study for asymptomatic progressive cardiac remodeling. The investigators showed that with advancing age, patterns of increasing LV wall thickness, decreasing LV dimensions, and increasing fractional shortening emerge. Hypertension, along with female sex and diabetes mellitus, influenced this pattern of remodeling.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG, et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation. 2009;119:3085–92.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Daniels SD, Meyer RA, Loggie JM. Determinants of cardiac involvement in children and adolescents with essential hypertension. Circulation. 1990;82:1243–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Post WS, Larson MG, Levy D. Impact of left ventricular structure on the incidence of hypertension. The Framingham Heart Study. Circulation. 1994;90:179–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Mazzolai L, Nussberger J, Aubert JF, Brunner DB, Gabbiani G, Brunner HR, et al. Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. Hypertension. 1998;31:1324–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Masaki T, Kimura S, Yanagisawa M, Goto K. Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation. 1991;84:1457–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Ichikawa KI, Hidai C, Okuda C, Kimata SI, Matsuoka R, Hosoda S, et al. Endogenous endothelin-1 mediates cardiac hypertrophy and switching of myosin heavy chain gene expression in rat ventricular myocardium. J Am Coll Cardiol. 1996;27:1286–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Hua L, Li C, Xia D, Qu P, Li Z, Zhang W, et al. Relationship between hypertensive left ventricular hypertrophy and levels of endothelin and nitric oxide. Hypertens Res. 2000;23:377–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Greenwood JP, Scott EM, Stoker JB, Mary DA. Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardiol. 2001;38:1711–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;330:1634–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Brull D, Dhamrait S, Myerson S, Erdmann J, Woods D, World M, et al. Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet. 2001;358:1155–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Xanthakis V, Larson MG, Wollert KC, Aragam J, Cheng S, Ho J, et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: Implications for screening. J Am Heart Assoc. 2013;2:e000399.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lind L, Wallentin L, Kempf T, Tapken H, Quint A, Lindahl B, et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the prospective investigation of the vasculature in Uppsala seniors (pivus) study. Eur Heart J. 2009;30:2346–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Pauriah M, Khan F, Lim TK, Elder DH, Godfrey V, Kennedy G, et al. B-type natriuretic peptide is an independent predictor of endothelial function in man. Clin Sci (Lond). 2012;123:307–12.CrossRefGoogle Scholar
  26. 26.
    Okin PM, Gerdts E, Kjeldsen SE, Julius S, Edelman JM, Dahlof B, et al. Gender differences in regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy. Hypertension. 2008;52:100–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Flack JM, Gardin JM, Yunis C, Liu K. Static and pulsatile blood pressure correlates of left ventricular structure and function in black and white young adults: the cardia study. Am Heart J. 1999;138:856–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Lorber R, Gidding SS, Daviglus ML, Colangelo LA, Liu K, Gardin JM. Influence of systolic blood pressure and body mass index on left ventricular structure in healthy african-american and white young adults: the cardia study. J Am Coll Cardiol. 2003;41:955–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Arnett DK, Rautaharju P, Crow R, Folsom AR, Ekelund LG, Hutchinson R, et al. Black-white differences in electrocardiographic left ventricular mass and its association with blood pressure (the ARIC study). Atherosclerosis Risk in Communities. Am J Cardiol. 1994;74:247–52.Google Scholar
  30. 30.
    Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation. 2003;108:977–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuznetsova T, Herbots L, Jin Y, Stolarz-Skrzypek K, Staessen JA. Systolic and diastolic left ventricular dysfunction: from risk factors to overt heart failure. Expert Rev Cardiovasc Ther. 2010;8:251–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Fischer M, Baessler A, Hense HW, Hengstenberg C, Muscholl M, Holmer S, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based survey of a population sample. Eur Heart J. 2003;24:320–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kuznetsova T, Herbots L, Lopez B, Jin Y, Richart T, Thijs L, et al. Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail. 2009;2:105–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Fernandes VR, Polak JF, Cheng S, Rosen BD, Carvalho B, Nasir K, et al. Arterial stiffness is associated with regional ventricular systolic and diastolic dysfunction: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:194–201.PubMedCrossRefGoogle Scholar
  35. 35.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Cardiol Clin. 2011;29:447–59.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosen BD, Saad MF, Shea S, Nasir K, Edvardsen T, Burke G, et al. Hypertension and smoking are associated with reduced regional left ventricular function in asymptomatic: individuals the multi-ethnic study of atherosclerosis. J Am Coll Cardiol. 2006;47:1150–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, et al. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6:692–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Rosen BD, Edvardsen T, Lai S, Castillo E, Pan L, Jerosch-Herold M, et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function: the Multi-Ethnic Study of Atherosclerosis. Circulation. 2005;112:984–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Rosen BD, Fernandes VR, Nasir K, Helle-Valle T, Jerosch-Herold M, Bluemke DA, et al. Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dyssynchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2009;120:859–66.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kannel WB, Wolf PA. Framingham study insights on the hazards of elevated blood pressure. JAMA. 2008;300:2545–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Lloyd-Jones DM, Evans JC, Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 2005;294:466–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Frost PH, Davis BR, Burlando AJ, Curb JD, Guthrie GP, Isaacsohn JL, et al. Coronary heart disease risk factors in men and women aged 60 years and older: findings from the systolic hypertension in the elderly program. Circulation. 1996;94:26–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Lowe LP, Greenland P, Ruth KJ, Dyer AR, Stamler R, Stamler J. Impact of major cardiovascular disease risk factors, particularly in combination, on 22-year mortality in women and men. Arch Intern Med. 1998;158:2007–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the score project. Eur Heart J. 2003;24:987–1003.PubMedCrossRefGoogle Scholar
  46. 46.
    MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.PubMedCrossRefGoogle Scholar
  47. 47.
    O'Donnell CJ, Ridker PM, Glynn RJ, Berger K, Ajani U, Manson JE, et al. Hypertension and borderline isolated systolic hypertension increase risks of cardiovascular disease and mortality in male physicians. Circulation. 1997;95:1132–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Miura K, Daviglus ML, Dyer AR, Liu K, Garside DB, Stamler J, et al. Relationship of blood pressure to 25-year mortality due to coronary heart disease, cardiovascular diseases, and all causes in young adult men: the Chicago Heart Association Detection Project in Industry. Arch Intern Med. 2001;161:1501–8.Google Scholar
  49. 49.
    Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275:1571–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Stokes 3rd J, Kannel WB, Wolf PA, D'Agostino RB, Cupples LA. Blood pressure as a risk factor for cardiovascular disease. The Framingham study—30 years of follow-up. Hypertension. 1989;13:I13–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103:1245–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Lloyd-Jones DM, Leip EP, Larson MG, Vasan RS, Levy D. Novel approach to examining first cardiovascular events after hypertension onset. Hypertension. 2005;45:39–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheng S, Gupta DK, Claggett B, Sharrett AR, Shah AM, Skali H, et al. Differential influence of distinct components of increased blood pressure on cardiovascular outcomes: from the Atherosclerosis Risk in Communities study. Hypertension. 2013;62:492–8.Google Scholar
  55. 55.
    Escobar E. Hypertension and coronary heart disease. J Hum Hypertens. 2002;16 Suppl 1:S61–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Taddei S, Salvetti A. Pathogenetic factors in hypertension. Endothelial factors. Clin Exp Hypertens. 1996;18:323–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157:527–36.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Richards AM, Nicholls MG, Troughton RW, Lainchbury JG, Elliott J, Frampton C, et al. Antecedent hypertension and heart failure after myocardial infarction. J Am Coll Cardiol. 2002;39:1182–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham Heart Study of the National Heart, Lung, and Blood Institute. Circulation. 2009;119:3070–7.Google Scholar
  62. 62.
    Ho JE, Gona P, Pencina MJ, Tu JV, Austin PC, Vasan RS, et al. Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community. Eur Heart J. 2012;33:1734–41.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Lee DS, Massaro JM, Wang TJ, Kannel WB, Benjamin EJ, Kenchaiah S, et al. Antecedent blood pressure, body mass index, and the risk of incident heart failure in later life. Hypertension. 2007;50:869–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D'Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Ekundayo OJ, Allman RM, Sanders PW, Aban I, Love TE, Arnett D, et al. Isolated systolic hypertension and incident heart failure in older adults: a propensity-matched study. Hypertension. 2009;53:458–65.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Butler J, Kalogeropoulos AP, Georgiopoulou VV, Bibbins-Domingo K, Najjar SS, Sutton-Tyrrell KC, et al. Systolic blood pressure and incident heart failure in the elderly. The cardiovascular health study and the health, ageing and body composition study. Heart. 2011;97:1304–11.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003;138:10–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002;7:51–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH. Increased pulse pressure and risk of heart failure in the elderly. JAMA. 1999;281:634–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett Jr JC, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306:856–63.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the cardiovascular health study. Eur Heart J. 2008;29:741–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Gradman AH, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis. 2006;48:326–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino Sr RB, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009;373:739–45.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Healey JS, Connolly SJ. Atrial fibrillation: hypertension as a causative agent, risk factor for complications, and potential therapeutic target. Am J Cardiol. 2003;91:9G–14.PubMedCrossRefGoogle Scholar
  75. 75.
    Mitchell GF, Vasan RS, Keyes MJ, Parise H, Wang TJ, Larson MG, et al. Pulse pressure and risk of new-onset atrial fibrillation. JAMA. 2007;297:709–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Go O, Rosendorff C. Hypertension and atrial fibrillation. Curr Cardiol Rep. 2009;11:430–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, et al. Incidence of and risk factors for atrial fibrillation in older adults. Circulation. 1997;96:2455–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Thomas MC, Dublin S, Kaplan RC, Glazer NL, Lumley T, Longstreth Jr WT, et al. Blood pressure control and risk of incident atrial fibrillation. Am J Hypertens. 2008;21:1111–6.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Milan A, Caserta MA, Dematteis A, Naso D, Pertusio A, Magnino C, et al. Blood pressure levels, left ventricular mass and function are correlated with left atrial volume in mild to moderate hypertensive patients. J Hum Hypertens. 2009;23:743–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Patrick R. Lawler
    • 1
  • Pranoti Hiremath
    • 1
  • Susan Cheng
    • 1
    • 2
  1. 1.Division of Cardiovascular MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Framingham Heart StudyFraminghamUSA

Personalised recommendations