Autoimmunity: An Underlying Factor in the Pathogenesis of Hypertension

  • Keisa W. Mathis
  • Hanna J. Broome
  • Michael J. Ryan
Antihypertensive Agents: Mechanisms of Drug Action (HM Siragy and B Waeber, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Abstract

One in every three adults in the United States has hypertension, and the underlying cause of most of these cases is unknown. Therefore, it is imperative to continue the study of mechanisms involved in the pathogenesis of hypertension. Decades ago, studies speculated that elements of an autoimmune response were associated with the development of hypertension based, in part, on the presence of circulating autoantibodies in hypertensive patients. In the past decade, a growing number of studies have been published supporting the concept that self-antigens and the subsequent activation of the adaptive immune system promote the development of hypertension. This manuscript will provide a brief review of the evidence supporting a role for the immune system in the development of hypertension, studies that implicate both cell-mediated and humoral immunity, and the relevance of understanding blood pressure control in an autoimmune disease model with hypertension.

Keywords

Adaptive immunity Autoantibodies Autoimmunity B cells Blood pressure Immune system Inflammation Lupus Systemic lupus erythematosus SLE T cells 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Strickler C. Significance of hypertension. South Med J. 1917;10:191–4.CrossRefGoogle Scholar
  2. 2.
    Freis ED. Chapter 164. In: Laragh JH, Brenner BM (eds). Hypertension, Pathophysiology Diagnosis and Management, 2nd ed. New York, Raven Press; 1995 pp 2741–2751.Google Scholar
  3. 3.
    Staessen J, Wang J, Bianchi G, Birkenhager W. Essential hypertension. Lancet. 2003;361:1629–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Chobanian A. Shattuck lecture: the hypertension paradox-more uncontrolled disease despite improved therapy. N Engl J Med. 2009;361:878–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Lloyd-Jones D, Adams R, Brown T, Carnethon M, Dai S, De S, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(e46):e215.Google Scholar
  6. 6.
    White F, Grollman A. Autoimmune factors associated with infarction of the kidney. Nephron. 1964;1:93–102.CrossRefPubMedGoogle Scholar
  7. 7.
    Svendsen U. Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A. 1976;84:523–8.PubMedGoogle Scholar
  8. 8.•
    Khraibi A, Norman R, Dzielak DJ. Chronic immunosuppression attenuates hypertension in Okamoto spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 1984;247(16):722–6. This study suggested a role for autoimmunity in an experimental model of hypertension. The major finding was that cyclophosphamide effectively reduced blood pressure in spontaneously hypertensive rats.Google Scholar
  9. 9.•
    Dzielak DJ. Immune mechanisms in experimental and essential hypertension. Am J Physiol Regul Integr Comp Physiol. 1991;260(29):459–67. This report is an editorial review which highlights the research that had been done at that time regarding the link between hypertension and immune system activation.Google Scholar
  10. 10.
    Bautista L, Vera L, Arenas I, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005;19:149–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Chae C, Lee R, Rifai N, Ridker P. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38:399–403.CrossRefPubMedGoogle Scholar
  12. 12.••
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. This paper is a seminal study demonstrating that T cells, and not B cells, are involved in the development ofangiotensin II mediated hypertension.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Ferreri N, Zhao Y, Takizawa H, McGiff J. Tumor necrosis factor-alpha-angiotensin interactions and regulation of blood pressure. J Hypertens. 1997;15:1481–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Tran L, MacLeod K, McNeill J. Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Mol Cell Biochem. 2009;330:219–28.CrossRefPubMedGoogle Scholar
  15. 15.
    Elmarakby A, Quigley J, Imig J, Pollock J, Pollock D. TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2008;294:76–83.CrossRefGoogle Scholar
  16. 16.
    Elmarakby A, Quigley J, Pollock D, Imig J. Tumor necrosis factor alpha blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. Hypertension. 2006;47:557–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee D, Sturgis L, Labazi H, Osborne J, Fleming C, Pollock J, et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol. 2006;290:935–40.CrossRefGoogle Scholar
  18. 18.•
    Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500–7. This studywas one of the first to establish a role of IL-17 in the development of hypertension.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303(4):353–8.CrossRefGoogle Scholar
  20. 20.
    Cornelius D, Hogg J, Scott J, Wallace K, Herse F, Moseley J, et al. Administration of interleukin-17 soluble receptor C suppresses Th17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension. 2013;62(6):1068–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Nguyen H, Chiasson V, Chatterjee P, Kopriva S, Young K, Mitchell B. Interleukin-17 causes rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97(4):696–704.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.••
    Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17:218–25. This is an important study demonstrating that immunosuppressive therapy can reduce blood pressure in hypertensive patients with underlying autoimmune disorders.CrossRefGoogle Scholar
  23. 23.
    Ferro C, Edwards N, Hutchison C, Cockwell P, Steeds R, Savage C, et al. Does immunosuppressant medication lower blood pressure and arterial stiffness in patients with chronic kidney disease? An observational study. Hypertens Res. 2011;34(1):113–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Muller DN, Shagdarsuren E, Park J-K, Dechend R, Mervaala E, Hampich F, et al. Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol. 2002;161(5):1679–93.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rodriguez-Iturbe B, Quiroz Y, Gordon K, Rincon J, Chavez M, Parra G, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 2001;59:2222–32.PubMedGoogle Scholar
  26. 26.
    Mattson DL, James L, Berdan EA, Meister CJ. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension. 2006;48:149–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Miguel C, Das S, Lund H, Mattson DL. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:1136–42.CrossRefGoogle Scholar
  28. 28.
    Quiroz Y, Pons H, Gordon K, Rincon J, Chavez M, Parra G, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am J Physiol Ren Physiol. 2001;281:38–47.Google Scholar
  29. 29.
    Tian N, Gu J, Jordan S, Rose R, Hughson M, Manning R. Immune suppresion prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol. 2007;292:1018–25.CrossRefGoogle Scholar
  30. 30.
    De M, Das S, Lund H, Mattson D. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:1136–42.CrossRefGoogle Scholar
  31. 31.
    Boesen E, Williams D, Pollock J, Pollock D. Immunosuppression with mycophenolate mofetil attenuates the development of hypertension and albuminuria in deoxy-corticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol. 2010;37:1016–22.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Rodriguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-Acosta J, et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Ren Physiol. 2002;282:191–201.Google Scholar
  33. 33.
    Rodriguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri N. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 2004;24:587–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Ardiles L, Ehrenfeld P, Quiroz Y, Rodriguez-Iturbe, Herrera-Acosta J, Mezzano S, et al. Effect of mycophenolate mofetil on kallikrein expression in the kidney of 5/6 nephrectomized rats. Kidney Blood Press Res. 2002;25:289–95.CrossRefPubMedGoogle Scholar
  35. 35.
    Bravo J, Quiroz Y, Pons H, Parra G, Herrera-Acosta J, Johnson RJ, et al. Vimentin and heat shock protein expression are induced in the kidney by angiotensin and by nitric oxide inhibition. Kidney Int Suppl. 2003;64:S46–51.CrossRefGoogle Scholar
  36. 36.
    Pechman K, Basile D, Lund H, Mattson DL. Immune suppression blocks sodium-sensitive hypertension following recovery from ischemic acute renal failure. Am J Physiol Regul Integr Comp Physiol. 2008;294:1234–9.CrossRefGoogle Scholar
  37. 37.
    Crowley S, Song Y-S, Lin EE, Griffiths R, Kim H-S, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298:1089–97.CrossRefGoogle Scholar
  38. 38.
    Crowley SD, Vasievich MP, Ruiz P, Gould SK, Parsons KK, Pazmino AK, et al. Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. J Clin Invest. 2009;119(4):943–53.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, et al. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Ren Physiol. 2008;295:515–24.CrossRefGoogle Scholar
  40. 40.
    Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P, et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009;296:208–16.CrossRefGoogle Scholar
  41. 41.
    Barhoumi T, Kasal D, Li M, Shbat L, Laurant P, Neves M, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57:469–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Youn J, Yu H, Lim B, Koh M, Lee J, Chang D, et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013;62(1):126–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Harrison D, Guzik T, Lob HE, Madhur MS, Marvar P, Thabet S, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Rodriguez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson R. Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2012;39:96–103.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Quiroz Y, Johnson R, Rodiguez-Iturbe B. The role of T cells in the pathogenesis of primary hypertension. Nephrol Dial Transplant. 2012;27(S4):iv2–5.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Panoulas V, Metsios G, Pace A, John H, Treharne G, Banks M, et al. Hypertension in rheumatoid arthritis. Rheumatology. 2008;47:1286–98.CrossRefPubMedGoogle Scholar
  47. 47.
    Al-Herz A, Ensworth S, Shojania K, Esdaile J. Cardiovascular risk factor screening in systemic lupus erythematosus. J Rheumatol. 2003;30:493–6.PubMedGoogle Scholar
  48. 48.
    Budman D, Steinberg A. Hypertension and renal disease in systemic lupus erythematosus. Arch Intern Med. 1976;136:1003–7.CrossRefPubMedGoogle Scholar
  49. 49.•
    Sabio J, Vargas-Hitos J, Navarrete-Navarrete N, Mediavilla J, Jimenez-Jaimez J, Diaz-Chamarro A, et al. Prevalence of and factors associated with hypertension in young and old women with systemic lupus erythematosus. J Rheumatol. 2011;38(6):1026–32. This study directly assessed the prevalence of hypertension in female SLE patients and demonstrated that it is 2–4 times greater in age-matched healthy females.CrossRefPubMedGoogle Scholar
  50. 50.
    Selzer F, Sutton-Tyrrell K, Fitzgerald S, Tracy R, Kuller L, Manzi S. Vascular stiffness in women with systemic lupus erythematosus. Hypertension. 2001;37:1075–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, et al. Experimental induction of salt-sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney Int Suppl. 2008;111:S55–9.CrossRefPubMedGoogle Scholar
  52. 52.••
    Pons H, Ferrebuz A, Quiroz Y, Romero-Vasquez F, Parra G, Johnson R, et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am J Physiol Ren Physiol. 2013;304:289–99. This study provides convincing evidence for HSP70 as a self-antigen that could contibute to the autoimmunity and immune system activation in hypertension.CrossRefGoogle Scholar
  53. 53.
    Ishizaka N, Aizawa T, Ohno M, Usui S, Mori I, Tang S, et al. Regulation and localization of HSP70 and HSP25 in the kidney of rats undergoing long-term administration of angiotensin II. Hypertension. 2002;39:122–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker R, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic Th17 cells. Nature. 2013;496:513–7.CrossRefGoogle Scholar
  55. 55.
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513–7.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.•
    Mathis KW, Venegas-Pont M, Masterson C, Wasson K, Ryan MJ. Blood pressure in a hypertensive mouse model of SLE is not salt-sensitive. Am J Physiol Regul Integr Comp Physiol. 2011;301:1281–5. This study shows that salt sensitivity does not contribute to the hypertension in SLE mice.CrossRefGoogle Scholar
  57. 57.
    Kristensen B, Andersen P. Autoantibodies in untreated and treated essential hypertension. Acta Med Scand. 1978;203:55–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Kristensen B, Andersen P, Wiik A. Autoantibodies and vascular events in essential hypertension: a five-year longitudinal study. J Hypertens. 1984;2:19–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Gudbrandsson T, Hansson L, Herlitz H, Lindholm L, Nilsson LA. Immunological changes in patients with previous malignant essential hypertension. Lancet. 1981;1:406–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Wenzel K, Haase H, Wallukat G, Derer W, Bartel S, Homuth V, et al. Potential relevance of alpha (1)-adrenergic receptor autoantibodies in refractory hypertension. PLoS ONE. 2008;3:e3742.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.•
    Jahns R, Boivin V, Lohse M. Beta(1)-Adrenergic receptor function, autoimmunity, and pathogenesis of dilated cardiomyopathy. Trends Cardiovasc Med. 2006;16:20–4. This describes an important role for autoantibodies in cardiovascular disorders.CrossRefPubMedGoogle Scholar
  62. 62.
    Xia Y, Kellems R. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ Res. 2013;113:78–87.CrossRefPubMedGoogle Scholar
  63. 63.
    Dragun D, Muller D, Brasen J, Fritsche L, Nieminen-Kelha M, Dechend R, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med. 2005;352(6):558–69.CrossRefPubMedGoogle Scholar
  64. 64.•
    Pons-Estel G, Alarcon G, Scofield L, Reinlib L, Cooper G. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum. 2010;39(4):257–1. This paper describes the current statistics on patients with SLE.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Lawrence R, Helmick C, Arnett F, Deyo R, Felson D, Giannini E, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 2013;41(5):778.CrossRefGoogle Scholar
  66. 66.
    Chakravarty E, Bush T, Manzi S, Clarke A, Ward M. Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data. Arthritis Rheum. 2007;56(6):2092.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.•
    Mathis KW, Venegas-Pont M, Masterson C, Stewart N, Wasson K, Ryan MJ. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension. 2012;59:673–9. This study shows that renal oxidative stress has a causal role in the development of hypertension during SLE.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Mathis KW, Venegas-Pont M, Flynn E, Williams J, Maric-Bilkan C, Dwyer T, et al. Hypertension in an experimental model of systemic lupus erythematosus occures independently of the renal nerves. Am J Physiol Regul Integr Comp Physiol. 2013;301:1286–92.Google Scholar
  69. 69.
    Ryan MJ, McLemore GR. Hypertension and impaired vascular function in a female mouse model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol. 2007;292:736–42.CrossRefGoogle Scholar
  70. 70.•
    Venegas-Pont M, Manigrasso MB, Grifoni SC, LaMarca BB, Maric C, Racusen LC, et al. Tumor necrosis factor-alpha antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2010;56:643–9. This work illustrates the important role of renal cytokines in the pathogensesis of hypertension during SLE.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.•
    Rudofsky UH, Dilwith RL, Roths JB, Lawrence DA, Kelley VE, Magro AM. Differenses in the occurence of hypertension among (NZB x NZW)F1, MRL-lpr, and BXSB mice with lupus nephritis. Am J Pathol. 1984;116:107–14. This study demonstrates that mice with SLE have increased systolic pressure and low plasma renin.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Venegas-Pont M, Mathis KW, Iliescu R, Ray WH, Glover P, Ryan M. Blood pressure and renal hemodynamic responses to acute angiotensin II infusion are enhanced in a female mouse model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):1286–92.CrossRefGoogle Scholar
  73. 73.
    Laragh J. Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens. 2013;14(9):837–54.CrossRefGoogle Scholar
  74. 74.
    Obarzanek E, Proschan M, Vollmer W, Moore T, Sacks F, Appel L, et al. Individual blood pressure responses to changes in salt intake: results from the DASH-Sodium trial. Hypertension. 2003;42(4):459–67.CrossRefPubMedGoogle Scholar
  75. 75.
    Mathis KW, Wallace K, Wasson K, Masterson C, Ryan M. T cells promote the progression of hypertension and renal injury during systemic lupus erythematosus. Hypertension. 2012;60:A174.Google Scholar
  76. 76.
    Mathis KW, Wallace K, LaMarca B, Ryan M. Humoral immune system activation promotes the development of hypertension. FASEB J. 2013;27:906.4.Google Scholar
  77. 77.
    Seaberg EC, Muñoz A, Lu M, Detels R, Margolick JB, Riddler SA, et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS. 2005;19(9):953–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Stumpf C, Auer C, Yilmaz A, Lewczuk P, Klinghammer L, Schneider M, et al. Serum levels of the Th1 chemoattractant interferon-gamma-inducible protein (IP) 10 are elevated in patients with essential hypertension. Hypertens Res. 2011;34:484–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Jong-Chan Y*, Hee Tae Y*, Beom JL, Myoung JK, Jino L, Dong-Yeop C, et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013;62:126–33.CrossRefGoogle Scholar
  80. 80.
    Hughson MD, Gobe GC, Hoy WE, Manning RD, Douglas-Denton R, Bertram JF. Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites. Am J Kidney Dis. 2008;52:18–28.CrossRefPubMedGoogle Scholar
  81. 81.
    Heptinstall RH. Renal biopsies in hypertension. Br Heart J. 1954;16:133–41.CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens. 2002;20:1815–29.CrossRefPubMedGoogle Scholar
  83. 83.
    Kunes J, Poirier M, Tremblay J, Hamet P. Expression of HSP70 gene in lymphocytes from normotensive and hypertensive humans. Acta Physiol Scand. 1992;146:307–11.Google Scholar
  84. 84.
    Lefkos N, Boura P, Boudonas G, Zacharioudaki E, Efthimiadis A, Tsougas M, et al. Immunopathogenic mechanisms in hypertension. Am J Hypertens. 1995;8:1141–5.CrossRefPubMedGoogle Scholar
  85. 85.
    Kronbichler A, Mayer G. Renal involvement in autoimmune connective tissue diseases. BMC Med. 2013;11:95.CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Armstrong AW, Harskamp CT, Armstrong EJ. The association between psoriasis and hypertension: a systematic review and meta-analysis of observational studies. J Hypertens. 2013;31(3):433–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Keisa W. Mathis
    • 1
  • Hanna J. Broome
    • 1
  • Michael J. Ryan
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations