Current Hypertension Reports

, 16:416 | Cite as

AT2 Receptor and Tissue Injury: Therapeutic Implications

  • Pawel Namsolleck
  • Chiara Recarti
  • Sébastien Foulquier
  • Ulrike Muscha Steckelings
  • Thomas UngerEmail author
Mediators, Mechanisms, and Pathways in Tissue Injury (T Fujita, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Mediators, Mechanisms, and Pathways in Tissue Injury


The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.


Renin-angiotensin system AT2 receptor Angiotensin II CGP42112 PD123319 Signaling Tissue injury Inflammation Fibrosis Apoptosis Growth promotion/inhibition Cardioprotection Vascular protection Neuroprotection Neuroregeneration Myocardial infarction Aortic aneurysm Atherosclerosis Hypertension Stroke Spinal cord injury 


Compliance with Ethics Guidelines

Conflict of Interest

Pawel Namsolleck, Chiara Recarti, Sébastien Foulquier, and Thomas Unger declare that they have no conflict of interest.

Ulrike Muscha Steckelings has received modest research support (short term fellowship; free supply with drug) from Vicore Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Unger T. The angiotensin type 2 receptor: variations on an enigmatic theme. J Hypertens. 1999;17:1775–86.PubMedGoogle Scholar
  3. 3.
    Steckelings UM, Kaschina E, Unger T. The AT2 receptor–a matter of love and hate. Peptides. 2005;26:1401–9.PubMedGoogle Scholar
  4. 4.
    Steckelings UM, Unger T. Angiotensin II type 2 receptor agonists–where should they be applied? Expert Opin Investig Drugs. 2012;21:763–6.PubMedGoogle Scholar
  5. 5.
    Steckelings UM, Rompe F, Kaschina E, Namsolleck P, Grzesiak A, Funke-Kaiser H, et al. The past, present and future of angiotensin II type 2 receptor stimulation. J Renin-Angiotensin-Aldosterone Syst. 2010;11:67–73.PubMedGoogle Scholar
  6. 6.
    Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci U S A. 1995;92:10663–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gallinat S, Yu M, Dorst A, Unger T, Herdegen T. Sciatic nerve transection evokes lasting up-regulation of angiotensin AT2 and AT1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res. 1998;57:111–22.PubMedGoogle Scholar
  8. 8.
    Altarche-Xifró W, Curato C, Kaschina E, Grzesiak A, Slavic S, Dong J, et al. Cardiac c-kit + AT2+ cell population is increased in response to ischemic injury and supports cardiomyocyte performance. Stem Cells. 2009;27:2488–97.PubMedGoogle Scholar
  9. 9.
    Busche S, Gallinat S, Bohle RM, Reinecke A, Seebeck J, Franke F, et al. Expression of angiotensin AT(1) and AT(2) receptors in adult rat cardiomyocytes after myocardial infarction. A single-cell reverse transcriptase-polymerase chain reaction study. Am J Pathol. 2000;157:605–11.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest. 1995;95:46–54.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J. 2005;19:617–9.PubMedGoogle Scholar
  12. 12.
    Gohlke P, Pees C, Unger T. AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension. 1998;31:349–55.PubMedGoogle Scholar
  13. 13.
    Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension. 2005;45:960–6.PubMedGoogle Scholar
  14. 14.
    Fischer TA, Singh K, O’Hara DS, Kaye DM, Kelly RA. Role of AT1 and AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult cardiac myocytes. Am J Physiol. 1998;275:H906–916.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J Biol Chem. 1997;272:19022–6.PubMedGoogle Scholar
  16. 16.
    Lokuta AJ, Cooper C, Gaa ST, Wang HE, Rogers TB. Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem. 1994;269:4832–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rompe F, Artuc M, Hallberg A, Alterman M, Ströder K, Thöne-Reineke C, et al. Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension. 2010;55:924–31.PubMedGoogle Scholar
  18. 18.
    Wu L, Iwai M, Li Z, Shiuchi T, Min L-J, Cui T-X, et al. Regulation of inhibitory protein-kappaB and monocyte chemoattractant protein-1 by angiotensin II type 2 receptor-activated Src homology protein tyrosine phosphatase-1 in fetal vascular smooth muscle cells. Mol Endocrinol. 2004;18:666–78.PubMedGoogle Scholar
  19. 19.
    McCarthy CA, Vinh A, Callaway JK, Widdop RE. Angiotensin AT2 receptor stimulation causes neuroprotection in a conscious rat model of stroke. Stroke. 2009;40:1482–9.PubMedGoogle Scholar
  20. 20.
    Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM. Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol. 2013;40:580–8.PubMedGoogle Scholar
  21. 21.
    Pendergrass KD, Gwathmey TM, Michalek RD, Grayson JM, Chappell MC. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochem Biophys Res Commun. 2009;384:149–54.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Dandapat A, Hu CP, Chen J, Liu Y, Khan JA, Remeo F, et al. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem Biophys Res Commun. 2008;366:871–7.PubMedGoogle Scholar
  23. 23.
    Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010;459:923–39.PubMedGoogle Scholar
  24. 24.
    Li Z, Zhang G, Feil R, Han J, Du X. Sequential activation of p38 and ERK pathways by cGMP-dependent protein kinase leading to activation of the platelet integrin alphaIIb beta3. Blood. 2006;107:965–72.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dhande I, Ali Q, Hussain T. Proximal tubule angiotensin AT2 receptors mediate an anti-inflammatory response via interleukin-10: role in renoprotection in obese rats. Hypertension. 2013;61:1218–26.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifró W, Miteva K, et al. Identification of noncytotoxic and IL-10-producing CD8 + AT2R + T cell population in response to ischemic heart injury. J Immunol. 2010;185:6286–93.PubMedGoogle Scholar
  27. 27.
    Gelosa P, Pignieri A, Fändriks L, de Gasparo M, Hallberg A, Banfi C, et al. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens. 2009;27:2444–51.PubMedGoogle Scholar
  28. 28.
    Rehman A, Leibowitz A, Yamamoto N, Rautureau Y, Paradis P, Schiffrin EL. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2012;59:291–9.PubMedGoogle Scholar
  29. 29.
    Valero-Esquitino V, Lucht K, Cirere-Salinas D, Stubbe T, Pascual A, Curato C, et al. Direct angiotensin type 2 receptor stimulation attenuates T-lymphocyte infiltration to the central nervous system and modulates T-cell differentiation. 17th Annual Meeting of the European Council for Cardiovascular Research (ECCR). La Colle sur Loup – Nice, France; 2013.Google Scholar
  30. 30.
    Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M, Rompe F, et al. Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation. 2008;118:2523–32.PubMedGoogle Scholar
  31. 31.
    Brassard P, Amiri F, Schiffrin EL. Combined angiotensin II type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension. 2005;46:598–606.PubMedGoogle Scholar
  32. 32.
    Jing T, Wang H, Srivenugopal KS, He G, Liu J, Miao L, et al. Conditional expression of type 2 angiotensin II receptor in rat vascular smooth muscle cells reveals the interplay of the angiotensin system in matrix metalloproteinase 2 expression and vascular remodeling. Int J Mol Med. 2009;24:103–10.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lauer D, Slavic S, Sommerfeld M, Thöne-Reineke C, Sharkovska Y, Hallberg A, et al. AT2 receptor agonism regulates TIMP1/MMP9 axis in the heart preventing cardiac fibrosis and improving heart function after experimental myocardial infarction. Hypertension. 2013.Google Scholar
  34. 34.
    Kljajic ST, Widdop RE, Vinh A, Welungoda I, Bosnyak S, Jones ES, et al. Direct AT2 receptor stimulation is athero-protective and stabilizes plaque in Apolipoprotein E-deficient mice. Int J Cardiol. 2013;169:281–7.PubMedGoogle Scholar
  35. 35.
    Horiuchi M, Akishita M, Dzau VJ. Molecular and cellular mechanism of angiotensin II-mediated apoptosis. Endocr Res. 1998;24:307–14.PubMedGoogle Scholar
  36. 36.
    Savoia C, D’Agostino M, Lauri F, Volpe M. Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens. 2011;20:125–32.PubMedGoogle Scholar
  37. 37.
    Namsolleck P, Boato F, Schwengel K, Paulis L, Matho KS, Geurts N, et al. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol Dis. 2013;51:177–91.PubMedGoogle Scholar
  38. 38.
    Gallinat S, Busche S, Schütze S, Krönke M, Unger T. AT2 receptor stimulation induces generation of ceramides in PC12W cells. FEBS Lett. 1999;443:75–9.PubMedGoogle Scholar
  39. 39.
    Kacimi R, Gerdes AM. Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure. Hypertension. 2003;41:968–77.PubMedGoogle Scholar
  40. 40.
    Wang X, Phillips MI, Mehta JL. LOX-1 and angiotensin receptors, and their interplay. Cardiovasc Drugs Ther. 2011;25:401–17.PubMedGoogle Scholar
  41. 41.
    Tan NY, Li J-M, Stocker R, Khachigian LM. Angiotensin II-inducible smooth muscle cell apoptosis involves the angiotensin II type 2 receptor, GATA-6 activation, and FasL-Fas engagement. Circ Res. 2009;105:422–30.PubMedGoogle Scholar
  42. 42.
    Bedecs K, Elbaz N, Sutren M, Masson M, Susini C, Strosberg AD, et al. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J. 1997;325(Pt 2):449–54.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Daviet L, et al. Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc Res. 2001;49:863–71.PubMedGoogle Scholar
  44. 44.
    Horiuchi M, Hayashida W, Akishita M, Tamura K, Daviet L, Lehtonen JY, et al. Stimulation of different subtypes of angiotensin II receptors, AT1 and AT2 receptors, regulates STAT activation by negative crosstalk. Circ Res. 1999;84:876–82.PubMedGoogle Scholar
  45. 45.
    Nouet S, Amzallag N, Li J-M, Louis S, Seitz I, Cui T-X, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem. 2004;279:28989–97.PubMedGoogle Scholar
  46. 46.
    Wruck CJ, Funke-Kaiser H, Pufe T, Kusserow H, Menk M, Schefe JH, et al. Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler Thromb Vasc Biol. 2005;25:57–64.PubMedGoogle Scholar
  47. 47.
    Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price Jr E, Roberts RL, et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J. 2003;22:6471–82.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Guimond M-O, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne). 2012;3:164.Google Scholar
  49. 49.
    Guimond M-O, Gallo-Payet N. The angiotensin II type 2 receptor in brain functions: an update. Int J Hypertens. 2012;2012:351758.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Stroth U, Meffert S, Gallinat S, Unger T. Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res Mol Brain Res. 1998;53:187–95.PubMedGoogle Scholar
  51. 51.
    Gallinat S, Csikos T, Meffert S, Herdegen T, Stoll M, Unger T. The angiotensin AT2 receptor down-regulates neurofilament M in PC12W cells. Neurosci Lett. 1997;227:29–32.PubMedGoogle Scholar
  52. 52.
    Beaudry H, Gendron L, Guimond M-O, Payet MD, Gallo-Payet N. Involvement of protein kinase C alpha (PKC alpha) in the early action of angiotensin II type 2 (AT2) effects on neurite outgrowth in NG108-15 cells: AT2-receptor inhibits PKC alpha and p21ras activity. Endocrinology. 2006;147:4263–72.PubMedGoogle Scholar
  53. 53.
    Gendron L, Laflamme L, Rivard N, Asselin C, Payet MD, Gallo-Payet N. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol Endocrinol. 1999;13:1615–26.PubMedGoogle Scholar
  54. 54.
    Plouffe B, Guimond M-O, Beaudry H, Gallo-Payet N. Role of tyrosine kinase receptors in angiotensin II AT2 receptor signaling: involvement in neurite outgrowth and in p42/p44mapk activation in NG108-15 cells. Endocrinology. 2006;147:4646–54.PubMedGoogle Scholar
  55. 55.
    Gendron L, Côté F, Payet MD, Gallo-Payet N. Nitric oxide and cyclic GMP are involved in angiotensin II AT(2) receptor effects on neurite outgrowth in NG108-15 cells. Neuroendocrinology. 2002;75:70–81.PubMedGoogle Scholar
  56. 56.
    Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci. 2012;123:193–203.PubMedGoogle Scholar
  57. 57.
    Li J-M, Mogi M, Tsukuda K, Tomochika H, Iwanami J, Min L-J, et al. Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1. Mol Endocrinol. 2007;21:499–511.PubMedGoogle Scholar
  58. 58.
    Foulquier S, Steckelings UM, Unger T. Impact of the AT(2) receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep. 2012;14:403–9.PubMedGoogle Scholar
  59. 59.
    Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther. 2008;120:292–316.PubMedGoogle Scholar
  60. 60.
    Foulquier S, Steckelings UM, Unger T. Perspective: a tale of two receptors. Nature. 2013;493:S9.PubMedGoogle Scholar
  61. 61.
    Qi Y, Li H, Shenoy V, Li Q, Wong F, Zhang L, et al. Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol. 2012;97:89–101.PubMedGoogle Scholar
  62. 62.
    Jones ES, Black MJ, Widdop RE. Influence of angiotensin II subtype 2 receptor (AT(2)R) antagonist, PD123319, on cardiovascular remodelling of aged spontaneously hypertensive rats during chronic angiotensin II subtype 1 receptor (AT(1)R) blockade. Int J Hypertens. 2012;2012:543062.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bruce E, Shenoy V, Francis J, Steckelings U, Unger T, Sumners C, et al. AT2 receptor agonist, compound 21, attenuates pulmonary hypertension and associated cardiac pathophysiology via the vasoprotective ACE2/Ang-(1-7)/Mas axis. High Blood Pressure Research (HBPR) 2012 Scientific Sessions. Washington, USA; 2012.Google Scholar
  64. 64.
    Bruce E, Shenoy V, Francis J, Steckelings U, Unger T, Sumners C, et al. Stimulation of angiotensin type 2 receptor as a potential therapy for pulmonary hypertension. High Blood Pressure Research (HBPR) 2012 Scientific Sessions. Washington, USA; 2012.Google Scholar
  65. 65.
    Senbonmatsu T, Ichihara S, Price Jr E, Gaffney FA, Inagami T. Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest. 2000;106:R25–29.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Funke-Kaiser H, Reinemund J, Steckelings UM, Unger T. Adapter proteins and promoter regulation of the angiotensin AT2 receptor–implications for cardiac pathophysiology. J Renin-Angiotensin-Aldosterone Syst. 2010;11:7–17.PubMedGoogle Scholar
  67. 67.
    Wang N, Frank GD, Ding R, Tan Z, Rachakonda A, Pandolfi PP, et al. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2. PLoS ONE. 2012;7:e35632.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Paulis L, Becker STR, Lucht K, Schwengel K, Slavic S, Kaschina E, et al. Direct angiotensin II type 2 receptor stimulation in Nω-nitro-L-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling. Hypertension. 2012;59:485–92.PubMedGoogle Scholar
  69. 69.
    Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science. 2011;332:361–5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J, Ide A, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation. 2005;112:1636–43.PubMedGoogle Scholar
  71. 71.
    Sales VL, Sukhova GK, Lopez-Ilasaca MA, Libby P, Dzau VJ, Pratt RE. Angiotensin type 2 receptor is expressed in murine atherosclerotic lesions and modulates lesion evolution. Circulation. 2005;112:3328–36.PubMedGoogle Scholar
  72. 72.
    Takata H, Yamada H, Kawahito H, Kishida S, Irie D, Kato T, et al. Vascular angiotensin II type 2 receptor attenuates atherosclerosis via a kinin/NO-dependent mechanism. J Renin-Angiotensin-Aldosterone Syst. 2013.Google Scholar
  73. 73.
    Daugherty A, Rateri DL, Howatt DA, Charnigo R, Cassis LA. PD123319 augments angiotensin II-induced abdominal aortic aneurysms through an AT2 receptor-independent mechanism. PLoS ONE. 2013;8:e61849.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Martino G, Pluchino S, Bonfanti L, Schwartz M. Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev. 2011;91:1281–304.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T. The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med. 1998;188:661–70.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Iwai M, Liu H-W, Chen R, Ide A, Okamoto S, Hata R, et al. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation. 2004;110:843–8.PubMedGoogle Scholar
  77. 77.
    Schelman WR, Andres R, Ferguson P, Orr B, Kang E, Weyhenmeyer JA. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression. Brain Res Mol Brain Res. 2004;128:20–9.PubMedGoogle Scholar
  78. 78.
    Lee S, Brait VH, Arumugam TV, Evans MA, Kim HA, Widdop RE, et al. Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Exp Transl Stroke Med. 2012;4:16.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.PubMedGoogle Scholar
  80. 80.
    Steckelings UM, Larhed M, Hallberg A, Widdop RE, Jones ES, Wallinder C, et al. Non-peptide AT2-receptor agonists. Curr Opin Pharmacol. 2011;11:187–92.PubMedGoogle Scholar
  81. 81.
    Namsolleck P, Valero-Esquitino V, Lucht K, Unger T, Steckelings U. Inhibition of microglia activation and migration by direct AT2-receptor stimulation. 24th Scientific Meeting of the International Society of Hypertension. Sydney, Australia; 2012.Google Scholar
  82. 82.
    Thoene-Reineke C, Rumschüssel K, Schmerbach K, Krikov M, Wengenmayer C, Godes M, et al. Prevention and intervention studies with telmisartan, ramipril and their combination in different rat stroke models. PLoS ONE. 2011;6:e23646.PubMedPubMedCentralGoogle Scholar
  83. 83.
    McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension. 2012;60:1531–7.PubMedGoogle Scholar
  84. 84.
    Schwengel K, Thoene-Reineke C, Lucht K, Namsolleck P, Horiuchi M, Iwai M, et al. Direct AT2-receptor stimulation improves survival and neurological outcome after experimental stroke (MCAO) in mice. 34. Wissenschaftlicher Kongress “Hypertonie 2010” der Deutschen Hochdruckliga e. V. DHL® – Deutsche Hypertonie Gesellschaft. Berlin, Germany; 2010.Google Scholar
  85. 85.
    Laflamme L, Gasparo M, Gallo JM, Payet MD, Gallo-Payet N. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem. 1996;271:22729–35.PubMedGoogle Scholar
  86. 86.
    Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol. 1996;122:59–67.PubMedGoogle Scholar
  87. 87.
    Wan Y, Wallinder C, Plouffe B, Beaudry H, Mahalingam AK, Wu X, et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J Med Chem. 2004;47:5995–6008.PubMedGoogle Scholar
  88. 88.
    Reinecke K, Lucius R, Reinecke A, Rickert U, Herdegen T, Unger T. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J. 2003;17:2094–6.PubMedGoogle Scholar
  89. 89.
    Sakata A, Mogi M, Iwanami J, Tsukuda K, Min L-J, Fujita T, et al. Sex-different effect of angiotensin II type 2 receptor on ischemic brain injury and cognitive function. Brain Res. 2009;1300:14–23.PubMedGoogle Scholar
  90. 90.
    Hilliard LM, Jones ES, Steckelings UM, Unger T, Widdop RE, Denton KM. Sex-specific influence of angiotensin type 2 receptor stimulation on renal function: a novel therapeutic target for hypertension. Hypertension. 2012;59:409–14.PubMedGoogle Scholar
  91. 91.
    Balaratnasingam S, Janca A. Brain derived neurotrophic factor: a novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Ther. 2012;134:116–24.PubMedGoogle Scholar
  92. 92.
    Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov. 2011;10:209–19.PubMedGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Pawel Namsolleck
    • 1
  • Chiara Recarti
    • 1
  • Sébastien Foulquier
    • 1
  • Ulrike Muscha Steckelings
    • 2
  • Thomas Unger
    • 1
    Email author
  1. 1.CARIM - School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Institute of Molecular Medicine, Department of Cardiovascular and Renal PhysiologyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations