Current Hypertension Reports

, 16:415 | Cite as

Corin in Natriuretic Peptide Processing and Hypertension

  • Yiqing Zhou
  • Qingyu WuEmail author
Mediators, Mechanisms, and Pathways in Tissue Injury (T Fujita, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Mediators, Mechanisms, and Pathways in Tissue Injury


Corin is a serine protease originally isolated from the heart. Functional studies show that corin is the long-sought enzyme responsible for activating cardiac natriuretic peptides. In mice, lack of corin prevents natriuretic peptide processing, causing salt-sensitive hypertension. In humans, corin variants and mutations that reduce corin activity have been identified in patients with hypertension and heart failure. Decreased plasma levels of corin antigen and activity have been reported in patients with heart failure and coronary artery disease. Low levels of urinary corin also have been found in patients with chronic kidney disease. Most recent studies show that corin also acts in the uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Here, we review the role of corin in natriuretic peptide processing and cardiovascular diseases such as hypertension, heart disease, pre-eclampsia, and chronic kidney disease.


African American ANP BNP Cardiac hypertrophy Chronic kidney disease CNP Corin ENaC Gene mutation Gene variant Heart failure Hypertension Natriuretic peptides Pre-eclampsia Salt-sensitive hypertension Spiral artery remodeling Trophoblast invasion 



We would like to thank our co-workers, past and present, who contributed to corin studies. This work was supported in part by NIH grants R01 HL089298 and HD064634, and grants from the National Natural Science Foundation of China (31070716, 81170247 and 31161130356) and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

Compliance with Ethics Guidelines

Conflict of Interest

Yiqing Zhou and Qingyu Wu declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Takei Y, Kawakoshi A, Tsukada T, Yuge S, Ogoshi M, Inoue K, et al. Contribution of comparative fish studies to general endocrinology: structure and function of some osmoregulatory hormones. J Exp Zool A Comp Exp Biol. 2006;305:787–98.PubMedGoogle Scholar
  2. 2.
    Kishimoto I, Tokudome T, Nakao K, Kangawa K. Natriuretic peptide system: an overview of studies using genetically engineered animal models. Febs J. 2011;278:1830–41.PubMedGoogle Scholar
  3. 3.
    McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab. 2005;16:469–77.PubMedGoogle Scholar
  4. 4.
    Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123:3378–82.PubMedPubMedCentralGoogle Scholar
  5. 5.•
    Barbato E, Bartunek J, Mangiacapra F, Sciarretta S, Stanzione R, Delrue L, et al. Influence of rs5065 atrial natriuretic peptide gene variant on coronary artery disease. J Am Coll Cardiol. 2012;59:1763–70. References 5 and 6 describe the association of a minor ANP gene allele, encoding an ANP variant with two extra C-terminal Arg residues, with an increased risk of cardiovascular disease in European and American populations.PubMedGoogle Scholar
  6. 6.•
    Cannone V, Huntley BK, Olson TM, Heublein DM, Scott CG, Bailey KR, et al. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension. 2013;62:860–5. References 5 and 6 describe the association of a minor ANP gene allele, encoding an ANP variant with two extra C-terminal Arg residues, with an increased risk of cardiovascular disease in European and American populations.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hodgson-Zingman DM, Karst ML, Zingman LV, Heublein DM, Darbar D, Herron KJ, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359:158–65.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lynch AI, Boerwinkle E, Davis BR, Ford CE, Eckfeldt JH, Leiendecker-Foster C, et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. Jama. 2008;299:296–307.PubMedGoogle Scholar
  9. 9.
    Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K. Functional deletion mutation of the 5'-flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese. Circ Res. 2000;86:841–5.PubMedGoogle Scholar
  10. 10.•
    Sciarretta S, Marchitti S, Bianchi F, Moyes A, Barbato E, Di Castro S, et al. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ Res. 2013;112:1355–64. This study shows that the ANP variant with two C-terminal Arg residues impaired endothelial cell survival and function through abnormal activation of natriuretic peptide receptor-C.PubMedGoogle Scholar
  11. 11.•
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–36. This study shows that ANP and BNP enhance the thermogenic program in mouse and human brown adipose tissues, revealing a novel mechanism of the cardiac natriuretic peptides in regulating energy metabolism.PubMedPubMedCentralGoogle Scholar
  12. 12.•
    Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122:4675–9. This study shows that ANP and BNP promote oxidative metabolism in human skeletal muscles, which may contribute to improved skeletal muscle fat oxidation through exercise.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J. Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab. 2008;19:130–7.PubMedGoogle Scholar
  14. 14.
    Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50:2357–68.PubMedGoogle Scholar
  15. 15.
    Del Ry S. C-type natriuretic peptide: a new cardiac mediator. Peptides. 2013;40:93–8.PubMedGoogle Scholar
  16. 16.
    Teixeira CC, Agoston H, Beier F. Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification. Dev Biol. 2008;319:171–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75:27–34.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A. 2001;98:4016–21.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27:47–72.PubMedGoogle Scholar
  20. 20.
    Yasoda A, Nakao K. Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr J. 2010;57:659–66.PubMedGoogle Scholar
  21. 21.
    Sato Y, Cheng Y, Kawamura K, Takae S, Hsueh AJ. C-type natriuretic Peptide stimulates ovarian follicle development. Mol Endocrinol. 2012;26:1158–66.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao K, et al. C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurones. J Neuroendocrinol. 2008;20:1213–23.PubMedGoogle Scholar
  24. 24.
    Sabbatini ME. Natriuretic peptides as regulatory mediators of secretory activity in the digestive system. Regul Pept. 2009;154:5–15.PubMedGoogle Scholar
  25. 25.
    Sogawa C, Wakizaka H, Aung W, Jin ZH, Tsuji AB, Furukawa T, et al. C-type natriuretic peptide specifically acts on the pylorus and large intestine in mouse gastrointestinal tract. Am J Pathol. 2013;182:172–9.PubMedGoogle Scholar
  26. 26.
    Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: new insights into the natriuretic peptide system. Kidney Int. 2009;75:142–6.PubMedGoogle Scholar
  27. 27.
    Yan W, Sheng N, Seto M, Morser J, Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem. 1999;274:14926–35.PubMedGoogle Scholar
  28. 28.
    Hooper JD, Scarman AL, Clarke BE, Normyle JF, Antalis TM. Localization of the mosaic transmembrane serine protease corin to heart myocytes. Eur J Biochem. 2000;267:6931–7.PubMedGoogle Scholar
  29. 29.
    Tran KL, Lu X, Lei M, Feng Q, Wu Q. Upregulation of corin gene expression in hypertrophic cardiomyocytes and failing myocardium. Am J Physiol Heart Circ Physiol. 2004;287:H1625–31.PubMedGoogle Scholar
  30. 30.
    Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci. 2011;99:1–50.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu Q. The serine protease corin in cardiovascular biology and disease. Front Biosci. 2007;12:4179–90.PubMedGoogle Scholar
  32. 32.
    Wu F, Yan W, Pan J, Morser J, Wu Q. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem. 2002;277:16900–5.PubMedGoogle Scholar
  33. 33.
    Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A. 2000;97:8525–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhou Y, Jiang J, Cui Y, Wu Q. Corin, atrial natriuretic peptide and hypertension. Nephrol Dial Transplant. 2009;24:1071–3.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ichiki T, Huntley BK, Burnett Jr JC. BNP molecular forms and processing by the cardiac serine protease corin. Adv Clin Chem. 2013;61:1–31.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ichiki T, Huntley BK, Heublein DM, Sandberg SM, McKie PM, Martin FL, et al. Corin is present in the normal human heart, kidney, and blood, with pro-B-type natriuretic peptide processing in the circulation. Clin Chem. 2011;57:40–7.PubMedGoogle Scholar
  37. 37.
    Peng J, Jiang J, Wang W, Qi X, Sun XL, Wu Q. Glycosylation and processing of pro-B-type natriuretic peptide in cardiomyocytes. Biochem Biophys Res Commun. 2011;411:593–8.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Semenov AG, Tamm NN, Seferian KR, Postnikov AB, Karpova NS, Serebryanaya DV, et al. Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases. Clin Chem. 2010;56:1166–76.PubMedGoogle Scholar
  39. 39.
    Sawada Y, Suda M, Yokoyama H, Kanda T, Sakamaki T, Tanaka S, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J Biol Chem. 1997;272:20545–54.PubMedGoogle Scholar
  40. 40.
    Semenov AG, Seferian KR. Biochemistry of the human B-type natriuretic peptide precursor and molecular aspects of its processing. Clin Chim Acta. 2011;412:850–60.PubMedGoogle Scholar
  41. 41.
    Semenov AG, Postnikov AB, Tamm NN, Seferian KR, Karpova NS, Bloshchitsyna MN, et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem. 2009;55:489–98.PubMedGoogle Scholar
  42. 42.
    Jiang J, Pristera N, Wang W, Zhang X, Wu Q. Effect of sialylated O-glycans in pro-brain natriuretic peptide stability. Clin Chem. 2010;56:959–66.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of pro-C-type natriuretic peptide. J Biol Chem. 2003;278:25847–52.PubMedGoogle Scholar
  44. 44.
    Chan JC, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci U S A. 2005;102:785–90.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu Q, Yu D, Post J, Halks-Miller M, Sadler JE, Morser J. Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest. 1998;101:321–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Sales KU, Hobson JP, Wagenaar-Miller R, Szabo R, Rasmussen AL, Bey A, et al. Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS One. 2011;6:e23261.PubMedPubMedCentralGoogle Scholar
  47. 47.
    John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.PubMedGoogle Scholar
  48. 48.
    Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378:65–8.PubMedGoogle Scholar
  49. 49.
    Wang W, Shen J, Cui Y, Jiang J, Chen S, Peng J, et al. Impaired sodium excretion and salt-sensitive hypertension in corin-deficient mice. Kidney Int. 2012;82:26–33.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol. 2005;167:835–48.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, et al. Genetic inversion in mast cell-deficient (W(sh)) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol. 2008;173:1693–701.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Buckley CL, Stokes AJ. Corin-deficient W-sh mice poorly tolerate increased cardiac afterload. Regul Pept. 2011;172:44–50.PubMedPubMedCentralGoogle Scholar
  53. 53.•
    Wang W, Cui Y, Shen J, Jiang J, Chen S, Peng J, et al. Salt-sensitive hypertension and cardiac hypertrophy in transgenic mice expressing a corin variant identified in blacks. Hypertension. 2012;60:1352–8. This study shows that the corin variant T555I/Q568P was defective in vivo and contibuted to salt-sensitive hypertension and cardiac hypertrophy, which resembled the phenotype in the African Americans carrying the corin variant allele.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Enshell-Seijffers D, Lindon C, Morgan BA. The serine protease Corin is a novel modifier of the Agouti pathway. Development. 2008;135:217–25.PubMedGoogle Scholar
  55. 55.
    Shim JH, Lee TR, Shin DW. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev. 2013;22:1264–74.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Pan J, Hinzmann B, Yan W, Wu F, Morser J, Wu Q. Genomic structures of the human and murine corin genes and functional GATA elements in their promoters. J Biol Chem. 2002;277:38390–8.PubMedGoogle Scholar
  57. 57.
    Dries DL, Victor RG, Rame JE, Cooper RS, Wu X, Zhu X, et al. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation. 2005;112:2403–10.PubMedGoogle Scholar
  58. 58.
    Rame JE, Drazner MH, Post W, Peshock R, Lima J, Cooper RS, et al. Corin I555(P568) allele is associated with enhanced cardiac hypertrophic response to increased systemic afterload. Hypertension. 2007;49:857–64.PubMedGoogle Scholar
  59. 59.
    Rame JE, Tam SW, McNamara D, Worcel M, Sabolinski ML, Wu AH, et al. Dysfunctional corin I555(P568) allele is associated with impaired brain natriuretic peptide processing and adverse outcomes in blacks with systolic heart failure: results from the Genetic Risk Assessment in Heart Failure substudy. Circ Heart Fail. 2009;2:541–8.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang W, Liao X, Fukuda K, Knappe S, Wu F, Dries DL, et al. Corin variant associated with hypertension and cardiac hypertrophy exhibits impaired zymogen activation and natriuretic peptide processing activity. Circ Res. 2008;103:502–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Dong N, Fang C, Jiang Y, Zhou T, Liu M, Zhou J, et al. Corin mutation R539C from hypertensive patients impairs zymogen activation and generates an inactive alternative ectodomain fragment. J Biol Chem. 2013;288:7867–74.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Knappe S, Wu F, Madlansacay MR, Wu Q. Identification of domain structures in the propeptide of corin essential for the processing of proatrial natriuretic peptide. J Biol Chem. 2004;279:34464–71.PubMedGoogle Scholar
  63. 63.
    Chen HH. Heart failure: a state of brain natriuretic peptide deficiency or resistance or both! J Am Coll Cardiol. 2007;49:1089–91.PubMedGoogle Scholar
  64. 64.
    Liang F, O'Rear J, Schellenberger U, Tai L, Lasecki M, Schreiner GF, et al. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J Am Coll Cardiol. 2007;49:1071–8.PubMedGoogle Scholar
  65. 65.
    Xu-Cai YO, Wu Q. Molecular forms of natriuretic peptides in heart failure and their implications. Heart. 2010;96:419–24.PubMedGoogle Scholar
  66. 66.
    Chen S, Sen S, Young D, Wang W, Moravec CS, Wu Q. Protease corin expression and activity in failing hearts. Am J Physiol Heart Circ Physiol. 2010;299:H1687–92.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Dries DL. Process matters: Emerging concepts underlying impaired natriuretic peptide system function in heart failure. Circ Heart Fail. 2011;4:107–10.PubMedGoogle Scholar
  68. 68.
    Ichiki T, Boerrigter G, Huntley BK, Sangaralingham SJ, McKie PM, Harty GJ, et al. Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R102–9.PubMedGoogle Scholar
  69. 69.
    Qi X, Jiang J, Zhu M, Wu Q. Human corin isoforms with different cytoplasmic tails that alter cell surface targeting. J Biol Chem. 2011;286:20963–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gladysheva IP, King SM, Houng AK. N-glycosylation modulates the cell-surface expression and catalytic activity of corin. Biochem Biophys Res Commun. 2008;373:130–5.PubMedGoogle Scholar
  71. 71.
    Liao X, Wang W, Chen S, Wu Q. Role of glycosylation in corin zymogen activation. J Biol Chem. 2007;282:27728–35.PubMedGoogle Scholar
  72. 72.
    Gladysheva IP, Robinson BR, Houng AK, Kovats T, King SM. Corin is co-expressed with pro-ANP and localized on the cardiomyocyte surface in both zymogen and catalytically active forms. J Mol Cell Cardiol. 2008;44:131–42.PubMedGoogle Scholar
  73. 73.
    Jiang J, Wu S, Wang W, Chen S, Peng J, Zhang X, et al. Ectodomain shedding and autocleavage of the cardiac membrane protease corin. J Biol Chem. 2011;286:10066–72.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Larsen BR, Steffensen SD, Nielsen NV, Friis S, Godiksen S, Bornholdt J, et al. Hepatocyte growth factor activator inhibitor-2 prevents shedding of matriptase. Exp Cell Res. 2013;319:918–29.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wu Q, Kuo HC, Deng GG. Serine proteases and cardiac function. Biochim Biophys Acta. 2005;1751:82–94.PubMedGoogle Scholar
  76. 76.
    Dong N, Dong J, Liu P, Xu L, Shi S, Wu Q. Effects of anticoagulants on human plasma soluble corin levels measured by ELISA. Clin Chim Acta. 2010;411:1998–2003.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Peleg A, Jaffe AS, Hasin Y. Enzyme-linked immunoabsorbent assay for detection of human serine protease corin in blood. Clin Chim Acta. 2009;409:85–9.PubMedGoogle Scholar
  78. 78.
    Dong N, Chen S, Yang J, He L, Liu P, Zhen D, et al. Plasma soluble corin in patients with heart failure. Circ Heart Fail. 2010;3:207–11.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ibebuogu UN, Gladysheva IP, Houng AK, Reed GL. Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail. 2011;2011:114–20.Google Scholar
  80. 80.•
    Peleg A, Ghanim D, Vered S, Hasin Y. Serum corin is reduced and predicts adverse outcome in non-ST-elevation acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2013;2:159–65. This study shows that reduced serum soluble corin levels were associated with major adverse cardiovascular events in patients with acute coronary syndrome.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Dong N, Chen S, Wang W, Zhou Y, Wu Q. Corin in clinical laboratory diagnostics. Clin Chim Acta. 2012;413:378–83.PubMedGoogle Scholar
  82. 82.•
    Gladysheva IP, Wang D, McNamee RA, Houng AK, Mohamad AA, Fan TM, et al. Corin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy. Hypertension. 2013;61:327–32. This study shows in a genetic mouse model of heart failure that overexpression of corin improved cardiac function, reduced pulmonary edema and increased survival, supporting a therapeutic strategy to enhance corin activity to treat heart failure patients.PubMedGoogle Scholar
  83. 83.
    Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53–6.PubMedGoogle Scholar
  84. 84.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–58.PubMedGoogle Scholar
  85. 85.
    Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744–54.PubMedPubMedCentralGoogle Scholar
  86. 86.••
    Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W, et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012;484:246–50. This study identifies a novel corin function in the uterus to promote trophoblast invasion and uterine spiral artery remodeling, which are important for preventing pregnancy-induced hypertension. This study also reports corin gene mutations that reduced corin activity in patients with pre-eclampsia.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Kaitu'u-Lino TJ, Ye L, Tuohey L, Dimitriadis E, Bulmer J, Rogers P, et al. Corin, an enzyme with a putative role in spiral artery remodeling, is up-regulated in late secretory endometrium and first trimester decidua. Hum Reprod. 2013;28:1172–80.PubMedGoogle Scholar
  88. 88.
    Zhou Y, Wu Q. Role of corin and atrial natriuretic peptide in preeclampsia. Placenta. 2013;34:89–94.PubMedGoogle Scholar
  89. 89.
    Kuhn M, Volker K, Schwarz K, Carbajo-Lozoya J, Flogel U, Jacoby C, et al. The natriuretic peptide/guanylyl cyclase–a system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest. 2009;119:2019–30.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tokudome T, Kishimoto I, Yamahara K, Osaki T, Minamino N, Horio T, et al. Impaired recovery of blood flow after hind-limb ischemia in mice lacking guanylyl cyclase-A, a receptor for atrial and brain natriuretic peptides. Arterioscler Thromb Vasc Biol. 2009;29:1516–21.PubMedGoogle Scholar
  91. 91.
    Armstrong DW, Tse MY, O'Tierney-Ginn PF, Wong PG, Ventura NM, Janzen-Pang JJ, et al. Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. Regul Pept. 2013;186:108–15.PubMedGoogle Scholar
  92. 92.
    Zaki MA, El-Banawy SE-DS, El-Gammal HH. Plasma soluble corin and N-terminal pro-atrial natriurectic peptide levels in pregnancy induced hypertensioin. Pregnancy Hypertens. 2012;2:48–52.PubMedGoogle Scholar
  93. 93.
    Polzin D, Kaminski HJ, Kastner C, Wang W, Kramer S, Gambaryan S, et al. Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int. 2010;78:650–9.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Klein JD. Corin: an ANP protease that may regulate sodium reabsorption in nephrotic syndrome. Kidney Int. 2010;78:635–7.PubMedGoogle Scholar
  95. 95.
    Bouley R. Corin: a key protein of an adaptive renal mechanism to respond to salt variation? Kidney Int. 2012;82:7–8.PubMedGoogle Scholar
  96. 96.
    Fang C, Shen L, Dong L, Liu M, Shi S, Dong N, et al. Reduced urinary corin levels in patients with chronic kidney disease. Clin Sci (Lond). 2013;124:709–17.Google Scholar
  97. 97.
    Das S, Au E, Krazit ST, Pandey KN. Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology. 2010;151:5841–50.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Page IH. Arterial hypertension in retrospect. Circ Res. 1974;34:133–42.PubMedGoogle Scholar
  99. 99.
    Buglioni A, Burnett Jr JC. A gut-heart connection in cardiometabolic regulation. Nat Med. 2013;19:534–6.PubMedPubMedCentralGoogle Scholar
  100. 100.••
    Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19:567–75. This study identifies a novel gut–heart link, in which gut-derived glucagon-like peptide-1 acts on glucagon-like peptide-1 receptor in the heart to promote ANP secretion, thereby regulating blood pressure and energy metabolism.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated HospitalSoochow UniversitySuzhouChina
  2. 2.Departments of Molecular CardiologyLerner Research Institute, Cleveland ClinicClevelandUSA
  3. 3.Molecular CardiologyCleveland ClinicClevelandUSA

Personalised recommendations