Advertisement

Current Hypertension Reports

, Volume 15, Issue 1, pp 47–58 | Cite as

Pathophysiology of Hypertension in the Absence of Nitric Oxide/Cyclic GMP Signaling

  • Robrecht Thoonen
  • Patrick Y. Sips
  • Kenneth D. Bloch
  • Emmanuel S. BuysEmail author
Hypertension and the Kidney (RM Carey and A Mimran, Section Editors)

Abstract

The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling system is a well-characterized modulator of cardiovascular function, in general, and blood pressure, in particular. The availability of mice mutant for key enzymes in the NO-cGMP signaling system facilitated the identification of interactions with other blood pressure modifying pathways (e.g. the renin-angiotensin-aldosterone system) and of gender-specific effects of impaired NO-cGMP signaling. In addition, recent genome-wide association studies identified blood pressure-modifying genetic variants in genes that modulate NO and cGMP levels. Together, these findings have advanced our understanding of how NO-cGMP signaling regulates blood pressure. In this review, we will summarize the results obtained in mice with disrupted NO-cGMP signaling and highlight the relevance of this pathway as a potential therapeutic target for the treatment of hypertension.

Keywords

Cyclic guanosine monophosphate Blood pressure Hypertension Cardiovascular function Soluble guanylate cyclase Nitric oxide Mutant mice Genetic variants Renin-angiotensin-aldosterone signaling Gender S-nitrosylation Therapeutics 

Notes

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive Summary: Heart Disease and Stroke Statistics–2012 Update: A Report From the American Heart Association. Circulation. 2012;125(1):188–97. doi: 10.1161/CIR.0b013e3182456d46. The 2012 AHA Statistical Update, a comprehensive overview of cardiovascular health and disease in the population, illustrates how big a burden on society uncontrolled hypertension is.PubMedCrossRefGoogle Scholar
  2. 2.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52. doi: 10.1161/01.HYP.0000107251.49515.c2.PubMedCrossRefGoogle Scholar
  3. 3.
    Kung H-C, Hoyert DL, Xu J, Murphy SL. Deaths: Final Data for 2005. Natl Vital Stat Rep. 2008;56(10):1–121.PubMedGoogle Scholar
  4. 4.
    Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76. doi: 10.1038/ng.361.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamm LL, Hering-Smith KS. Pivotal role of the kidney in hypertension. Am J Med Sci. 2010;340(1):30–2. doi: 10.1097/MAJ.0b013e3181e590f0.PubMedCrossRefGoogle Scholar
  7. 7.
    Ruilope LM. Hypertension in 2010: Blood pressure and the kidney. Nat Rev Nephrol. 2011;7(2):73–4. doi: 10.1038/nrneph.2010.189.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor RS, Ashton KE, Moxham T, Hooper L, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (cochrane review). Am J Hypertens. 2011;24(8):843–53. doi: 10.1038/ajh.2011.115.PubMedCrossRefGoogle Scholar
  9. 9.
    Mendelsohn ME. In hypertension, the kidney is not always the heart of the matter. J Clin Invest. 2005;115(4):840–4.PubMedGoogle Scholar
  10. 10.
    •• Buys ES, Raher MJ, Kirby A, Mohd S, Baron DM, Hayton SR, et al. Genetic modifiers of hypertension in soluble guanylate cyclase alpha1-deficient mice. J Clin Invest. 2012;122(6):2316–25. doi: 10.1172/JCI60119. Studies in sGC mutant mice illustrate that sGC signaling has gender-specific cardiovascular effects, identified quantitative trait loci linked to mean arterial pressure (MAP) in the context of sGC deficiency, and identified the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.PubMedCrossRefGoogle Scholar
  11. 11.
    • Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, Jamnongjit M, et al. High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci USA. 2008;105(18):6702–7. In this study it was shown that mice with a mutant PKGI develop hypertension due to dysfunctional NO-induced vascular relaxation. This observation confirms that hypertension can arise due to a primary vascular defect.PubMedCrossRefGoogle Scholar
  12. 12.
    Friebe A, Mergia E, Dangel O, Lange A, Koesling D. Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA. 2007;104(18):7699–704. doi: 10.1073/pnas.0609778104.PubMedCrossRefGoogle Scholar
  13. 13.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation. Nature. 1999;399(6736):601–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67. doi: 10.1038/nrd2466.PubMedCrossRefGoogle Scholar
  16. 16.
    Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–59. doi: 10.1146/annurev-biochem-050410-100030.PubMedCrossRefGoogle Scholar
  19. 19.
    Hobbs AJ. Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol Sci. 1997;18(12):484–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Bohme E, et al. Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA. 1994;91(7):2592–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Mergia E, Russwurm M, Zoidl G, Koesling D. Major occurrence of the new alpha(2)beta(1) isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal. 2003;15(2):189–95.PubMedCrossRefGoogle Scholar
  22. 22.
    • Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, Ichinose F, et al. Gender-specific hypertension and responsiveness to nitric oxide in sGC{alpha}1 knockout mice. Cardiovasc Res. 2008;79(1):179–86. This report indicated that loss of sGCα1 has a gender-specific effect on blood pressure, while showing that even low levels of sGC activation are still sufficient to produce NO-dependent vasorelaxation.PubMedCrossRefGoogle Scholar
  23. 23.
    Nimmegeers S, Sips P, Buys E, Brouckaert P, Van de Voorde J. Functional role of the soluble guanylyl cyclase alpha(1) subunit in vascular smooth muscle relaxation. Cardiovasc Res. 2007;76(1):149–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Vermeersch P, Buys E, Pokreisz P, Marsboom G, Ichinose F, Sips P, et al. Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia. Circulation. 2007;116(8):936–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D. Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest. 2006;116(6):1731–7. doi: 10.1172/JCI27657.PubMedCrossRefGoogle Scholar
  26. 26.
    Stauss HM, Godecke A, Mrowka R, Schrader J, Persson PB. Enhanced blood pressure variability in eNOS knockout mice. Hypertension. 1999;33(6):1359–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Sips PY, Brouckaert P, Ichinose F. The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. Basic Res Cardiol. 2011;106(4):635–43. doi: 10.1007/s00395-011-0167-y.PubMedCrossRefGoogle Scholar
  28. 28.
    Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, et al. Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab. 2006;17(6):251–8. doi: 10.1016/j.tem.2006.06.006.PubMedCrossRefGoogle Scholar
  29. 29.
    Su J, Scholz PM, Weiss HR. Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Exp Biol Med (Maywood). 2005;230(4):242–50.Google Scholar
  30. 30.
    Castro LR, Verde I, Cooper DM, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006;113(18):2221–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC. Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol. 2006;128(1):3–14.PubMedCrossRefGoogle Scholar
  32. 32.
    •• Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. doi: 10.1038/nature10405. This genome-wide association study of systolic and diastolic blood pressure identified sixteen novel loci in 200,000 individuals of European descent, including a variant in the GUCY1A3/GUCY1B3 locus, encoding the sGCα1 and sGCβ1 subunits. This study provides new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.PubMedCrossRefGoogle Scholar
  33. 33.
    Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7. doi: 10.1056/NEJM199007053230105.PubMedCrossRefGoogle Scholar
  34. 34.
    Friebe A, Koesling D. The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide. 2009;21(3–4):149–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol. 2006;176(Pt 1):213–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983;52(3):352–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3(1):31–6.PubMedGoogle Scholar
  38. 38.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377(6546):239–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 1996;93(23):13176–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Beierwaltes WH, Potter DL, Shesely EG. Renal baroreceptor-stimulated renin in the eNOS knockout mouse. Am J Physiol Renal Physiol. 2002;282(1):F59–64. doi: 10.1152/ajprenal.00144.2001.PubMedGoogle Scholar
  41. 41.
    Kurihara N, Alfie ME, Sigmon DH, Rhaleb NE, Shesely EG, Carretero OA. Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension. 1998;32(5):856–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Duplain H, Burcelin RM, Sartori C, Cook SP, Egli M, Lepori M, et al. Insulin Resistance, Hyperlipidemia, and Hypertension in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation. 2001;104(3):342–5. doi: 10.1161/01.cir.104.3.342.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang X-P, Liu Y-H, Shesely EG, Bulagannawar M, Liu F, Carretero OA. Endothelial Nitric Oxide Gene Knockout Mice. Hypertension. 1999;34(1):24–30. doi: 10.1161/01.hyp.34.1.24.PubMedCrossRefGoogle Scholar
  44. 44.
    Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM, et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995;378(6555):383–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Sun Y, Carretero OA, Xu J, Rhaleb N-E, Yang JJ, Pagano PJ, et al. Deletion of Inducible Nitric Oxide Synthase Provides Cardioprotection in Mice With 2-Kidney, 1-Clip Hypertension. Hypertension. 2009;53(1):49–56. doi: 10.1161/hypertensionaha.108.121822.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakata S, Tsutsui M, Shimokawa H, Suda O, Morishita T, Shibata K, et al. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation. 2008;117(17):2211–23. doi: 10.1161/CIRCULATIONAHA.107.742692.PubMedCrossRefGoogle Scholar
  47. 47.
    Barouch LA, Cappola TP, Harrison RW, Crone JK, Rodriguez ER, Burnett AL, et al. Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice. J Mol Cell Cardiol. 2003;35(6):637–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Lamping KG, Faraci FM. Role of sex differences and effects of endothelial NO synthase deficiency in responses of carotid arteries to serotonin. Arterioscler Thromb Vasc Biol. 2001;21(4):523–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Scotland RS, Morales-Ruiz M, Chen Y, Yu J, Rudic RD, Fulton D, et al. Functional reconstitution of endothelial nitric oxide synthase reveals the importance of serine 1179 in endothelium-dependent vasomotion. Circ Res. 2002;90(8):904–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Ding H, Kubes P, Triggle C. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase. Br J Pharmacol. 2000;129(6):1194–200. doi: 10.1038/sj.bjp.0703144.PubMedCrossRefGoogle Scholar
  51. 51.
    Scotland RS, Chauhan S, Vallance PJ, Ahluwalia A. An endothelium-derived hyperpolarizing factor-like factor moderates myogenic constriction of mesenteric resistance arteries in the absence of endothelial nitric oxide synthase-derived nitric oxide. Hypertension. 2001;38(4):833–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Atochin DN, Yuzawa I, Li Q, Rauwerdink KM, Malhotra R, Chang J, et al. Soluble guanylate cyclase alpha1beta1 limits stroke size and attenuates neurological injury. Stroke. 2010;41(8):1815–9. doi: 10.1161/STROKEAHA.109.577635.PubMedCrossRefGoogle Scholar
  53. 53.
    Buys ES, Cauwels A, Raher MJ, Passeri JJ, Hobai I, Cawley SM, et al. sGC(alpha)1(beta)1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models. Am J Physiol Heart Circ Physiol. 2009;297(2):H654–63. doi: 10.1152/ajpheart.00367.2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Thoonen R, Buys E, Cauwels A, Rogge E, Nimmegeers S, Hemel M, et al. NO-insensitive sGCbeta1 H105F knockin mice: if NO has no place to go. BMC Pharmacol. 2009;9 Suppl 1:S41.CrossRefGoogle Scholar
  55. 55.
    Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, et al. Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res. 2007;101(11):1096–103. doi: 10.1161/CIRCRESAHA.107.154351.PubMedCrossRefGoogle Scholar
  56. 56.
    Feil R, Gappa N, Rutz M, Schlossmann J, Rose CR, Konnerth A, et al. Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res. 2002;90(10):1080–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 1998;17(11):3045–51. doi: 10.1093/emboj/17.11.3045.PubMedCrossRefGoogle Scholar
  58. 58.
    Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U, et al. cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension. 2004;44(6):952–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, et al. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res. 2000;87(9):825–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, et al. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9(12):1506–12. doi: 10.1038/nm958.PubMedCrossRefGoogle Scholar
  61. 61.
    Prysyazhna O, Rudyk O, Eaton P. Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med. 2012;18(2):286–90. doi: 10.1038/nm.2603.PubMedCrossRefGoogle Scholar
  62. 62.
    Xia C, Bao Z, Yue C, Sanborn BM, Liu M. Phosphorylation and regulation of G-protein-activated phospholipase C-beta 3 by cGMP-dependent protein kinases. J Biol Chem. 2001;276(23):19770–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000;404(6774):197–201.PubMedCrossRefGoogle Scholar
  64. 64.
    Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991;40(6):923–31.PubMedGoogle Scholar
  65. 65.
    Liu H, Xiong Z, Sperelakis N. Cyclic nucleotides regulate the activity of L-type calcium channels in smooth muscle cells from rat portal vein. J Mol Cell Cardiol. 1997;29(5):1411–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA. 1994;91(16):7583–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol. 1995;486(Pt 1):47–58.PubMedGoogle Scholar
  68. 68.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87. doi: 10.1124/pr.59.3.3.PubMedCrossRefGoogle Scholar
  69. 69.
    Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev. 2006;86(1):1–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, et al. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest. 1997;99(2):278–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, et al. Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension. 1998;31(1 Pt 2):342–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Usui M, Ichiki T, Katoh M, Egashira K, Takeshita A. Regulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland. Hypertension. 1998;32(3):527–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Beierwaltes WH. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3. Am J Physiol Renal Physiol. 2006;290(6):F1376–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, et al. cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem. 2003;278(32):29640–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of Hypertension Drug Target Genes With Blood Pressure and Hypertension in 86 588 Individuals. Hypertension. 2011;57(5):903–10. doi: 10.1161/HYPERTENSIONAHA.110.158667.PubMedCrossRefGoogle Scholar
  76. 76.
    Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8. doi: 10.1038/ng.834.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87. doi: 10.1038/ng.384.PubMedCrossRefGoogle Scholar
  78. 78.
    Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009;41(3):348–53. doi: 10.1038/ng.328.PubMedCrossRefGoogle Scholar
  79. 79.
    Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al. Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011;89(6):688–700. doi: 10.1016/j.ajhg.2011.10.013.PubMedCrossRefGoogle Scholar
  80. 80.
    Kathiresan S, Larson MG, Vasan RS, Guo CY, Vita JA, Mitchell GF, et al. Common genetic variation at the endothelial nitric oxide synthase locus and relations to brachial artery vasodilator function in the community. Circulation. 2005;112(10):1419–27. doi: 10.1161/CIRCULATIONAHA.105.544619.PubMedCrossRefGoogle Scholar
  81. 81.
    Mitchell GF, Guo CY, Kathiresan S, Vasan RS, Larson MG, Vita JA, et al. Vascular stiffness and genetic variation at the endothelial nitric oxide synthase locus: the Framingham Heart study. Hypertension. 2007;49(6):1285–90. doi: 10.1161/HYPERTENSIONAHA.106.085266.PubMedCrossRefGoogle Scholar
  82. 82.
    Salvi E, Kutalik Z, Glorioso N, Benaglio P, Frau F, Kuznetsova T, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case–control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59(2):248–55. doi: 10.1161/HYPERTENSIONAHA.111.181990.PubMedCrossRefGoogle Scholar
  83. 83.
    Fedorowski A, Franceschini N, Brody J, Liu C, Verwoert GC, Boerwinkle E, et al. Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium. Eur Heart J. 2012. doi: 10.1093/eurheartj/ehs058.
  84. 84.
    Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum Mol Genet. 2011;20(11):2285–95. doi: 10.1093/hmg/ddr113.PubMedCrossRefGoogle Scholar
  85. 85.
    Kannel WB WP, Garrison RJ. Some risk factors related to the annual incidence of cardiovascular disease and death using pooled repeated biennial measurements: Framingham Heart Study, 30 year followup. Springfield: National Technical Information Service; 1987.Google Scholar
  86. 86.
    Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension. 1995;25(3):305–13.PubMedCrossRefGoogle Scholar
  87. 87.
    Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–208.PubMedCrossRefGoogle Scholar
  88. 88.
    Scotland RS, Madhani M, Chauhan S, Moncada S, Andresen J, Nilsson H, et al. Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase-1 double-knockout mice: key role for endothelium-derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation. 2005;111(6):796–803.PubMedCrossRefGoogle Scholar
  89. 89.
    Beigi F, Gonzalez DR, Minhas KM, Sun QA, Foster MW, Khan SA, et al. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc Natl Acad Sci USA. 2012;109(11):4314–9. doi: 10.1073/pnas.1113319109.PubMedGoogle Scholar
  90. 90.
    Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell. 2004;116(4):617–28.PubMedCrossRefGoogle Scholar
  91. 91.
    Sanghani PC, Davis WI, Fears SL, Green SL, Zhai L, Tang Y, et al. Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. J Biol Chem. 2009;284(36):24354–62. doi: 10.1074/jbc.M109.019919.PubMedCrossRefGoogle Scholar
  92. 92.
    Greco TM, Hodara R, Parastatidis I, Heijnen HF, Dennehy MK, Liebler DC, et al. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci USA. 2006;103(19):7420–5. doi: 10.1073/pnas.0600729103.PubMedCrossRefGoogle Scholar
  93. 93.
    Ulrich C, Quillici DR, Schegg K, Woolsey R, Nordmeier A, Buxton IL. Uterine smooth muscle S-nitrosylproteome in pregnancy. Mol Pharmacol. 2012;81(2):143–53. doi: 10.1124/mol.111.075804.PubMedCrossRefGoogle Scholar
  94. 94.
    Lang RJ, Harvey JR, McPhee GJ, Klemm MF. Nitric oxide and thiol reagent modulation of Ca2 + −activated K + (BKCa) channels in myocytes of the guinea-pig taenia caeci. J Physiol. 2000;525(Pt 2):363–76.PubMedCrossRefGoogle Scholar
  95. 95.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368(6474):850–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA. 2007;104(30):12312–7. doi: 10.1073/pnas.0703944104.PubMedCrossRefGoogle Scholar
  97. 97.
    • Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, Arum Kumar HS, Meurer S, et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest. 2006;116(9):2552–61. This study proved for the first time the pharmacological principle of sGC activators under conditions of increased oxidative stress.PubMedCrossRefGoogle Scholar
  98. 98.
    Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–52. doi: 10.1161/01.HYP.0000138070.47616.9d.PubMedCrossRefGoogle Scholar
  99. 99.
    Chirkov YY, Horowitz JD. Impaired tissue responsiveness to organic nitrates and nitric oxide: a new therapeutic frontier? Pharmacol Ther. 2007;116(2):287–305. doi: 10.1016/j.pharmthera.2007.06.012.PubMedCrossRefGoogle Scholar
  100. 100.
    Franco V, Oparil S. Is there a new treatment for hypertensive disease in the horizon? Role of soluble guanylate cyclase. Hypertension. 2006;48(5):822–3.PubMedCrossRefGoogle Scholar
  101. 101.
    Foerster J, Harteneck C, Malkewitz J, Schultz G, Koesling D. A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of alpha 1 and beta 1 subunits. Eur J Biochem. 1996;240(2):380–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhao Y, Brandish PE, DiValentin M, Schelvis JP, Babcock GT, Marletta MA. Inhibition of soluble guanylate cyclase by ODQ. Biochemistry. 2000;39(35):10848–54.PubMedCrossRefGoogle Scholar
  103. 103.
    Ahrens I, Habersberger J, Baumlin N, Qian H, Smith BK, Stasch JP, et al. Measuring oxidative burden and predicting pharmacological response in coronary artery disease patients with a novel direct activator of haem-free/oxidised sGC. Atherosclerosis. 2011;218(2):431–4. doi: 10.1016/j.atherosclerosis.2011.06.042.PubMedCrossRefGoogle Scholar
  104. 104.
    Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5(9):755–68.PubMedCrossRefGoogle Scholar
  105. 105.
    Doggrell SA. Clinical potential of nitric oxide-independent soluble guanylate cyclase activators. Curr Opin Investig Drugs. 2005;6(9):874–8.PubMedGoogle Scholar
  106. 106.
    Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543: in vivo studies. Br J Pharmacol. 2002;135(2):344–55.PubMedCrossRefGoogle Scholar
  107. 107.
    Straub A, Benet-Buckholz J, Frode R, Kern A, Kohlsdorfer C, Schmitt P, et al. Metabolites of orally active NO-independent pyrazolopyridine stimulators of soluble guanylate cyclase. Bioorg Med Chem. 2002;10(6):1711–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Badejo Jr AM, Nossaman VE, Pankey EA, Bhartiya M, Kannadka CB, Murthy SN, et al. Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase stimulator, BAY 41–8543, are modulated by nitric oxide. Am J Physiol Heart Circ Physiol. 2010;299(4):H1153–9. doi: 10.1152/ajpheart.01101.2009.PubMedCrossRefGoogle Scholar
  109. 109.
    Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410(6825):212–5. doi: 10.1038/35065611.PubMedCrossRefGoogle Scholar
  110. 110.
    Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, et al. Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension. 2006;48(5):972–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Zanfolin M, Faro R, Araujo EG, Guaraldo AM, Antunes E, De Nucci G. Protective effects of BAY 41–2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J Cardiovasc Pharmacol. 2006;47(3):391–5.PubMedGoogle Scholar
  112. 112.
    Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543: in vitro studies. Br J Pharmacol. 2002;135(2):333–43. doi: 10.1038/sj.bjp.0704484.PubMedCrossRefGoogle Scholar
  113. 113.
    Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H, et al. Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation. 2006;113(2):286–95. doi: 10.1161/CIRCULATIONAHA.105.581405.PubMedCrossRefGoogle Scholar
  114. 114.
    Boerrigter G, Costello-Boerrigter LC, Cataliotti A, Lapp H, Stasch JP, Burnett Jr JC. Targeting heme-oxidized soluble guanylate cyclase in experimental heart failure. Hypertension. 2007;49(5):1128–33. doi: 10.1161/HYPERTENSIONAHA.106.083832.PubMedCrossRefGoogle Scholar
  115. 115.
    Oberwittler H, Hirschfeld-Warneken A, Wesch R, Willerich H, Teichert L, Lehr KH, et al. Significant pharmacokinetic and pharmacodynamic interaction of warfarin with the NO-independent sGC activator HMR1766. J Clin Pharmacol. 2007;47(1):70–7. doi: 10.1177/0091270006294540.PubMedCrossRefGoogle Scholar
  116. 116.
    Benz K, Orth SR, Simonaviciene A, Linz W, Schindler U, Rutten H, et al. Blood pressure-independent effect of long-term treatment with the soluble heme-independent guanylyl cyclase activator HMR1766 on progression in a model of noninflammatory chronic renal damage. Kidney Blood Press Res. 2007;30(4):224–33. doi: 10.1159/000104091.PubMedCrossRefGoogle Scholar
  117. 117.
    Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, et al. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol. 2002;136(5):773–83. doi: 10.1038/sj.bjp.0704778.PubMedCrossRefGoogle Scholar
  118. 118.
    Knorr A, Hirth-Dietrich C, Alonso-Alija C, Harter M, Hahn M, Keim Y, et al. Nitric oxide-independent activation of soluble guanylate cyclase by BAY 60–2770 in experimental liver fibrosis. Arzneimittelforschung. 2008;58(2):71–80. doi: 10.1055/s-0031-1296471.PubMedGoogle Scholar
  119. 119.
    Pankey EA, Bhartiya M, Badejo Jr AM, Haider U, Stasch JP, Murthy SN, et al. Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase activator, BAY 60–2770, are not dependent on endogenous nitric oxide or reduced heme. Am J Physiol Heart Circ Physiol. 2011;300(3):H792–802. doi: 10.1152/ajpheart.00953.2010.PubMedCrossRefGoogle Scholar
  120. 120.
    Korkmaz S, Radovits T, Barnucz E, Hirschberg K, Neugebauer P, Loganathan S, et al. Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation. 2009;120(8):677–86. doi: 10.1161/CIRCULATIONAHA.109.870774.PubMedCrossRefGoogle Scholar
  121. 121.
    Radovits T, Korkmaz S, Miesel-Groschel C, Seidel B, Stasch JP, Merkely B, et al. Pre-conditioning with the soluble guanylate cyclase activator Cinaciguat reduces ischaemia-reperfusion injury after cardiopulmonary bypass. Eur J Cardiothorac Surg. 2011;39(2):248–55. doi: 10.1016/j.ejcts.2010.05.025.PubMedCrossRefGoogle Scholar
  122. 122.
    Frey R, Muck W, Unger S, Artmeier-Brandt U, Weimann G, Wensing G. Pharmacokinetics, pharmacodynamics, tolerability, and safety of the soluble guanylate cyclase activator cinaciguat (BAY 58–2667) in healthy male volunteers. J Clin Pharmacol. 2008;48(12):1400–10. doi: 10.1177/0091270008322906.PubMedCrossRefGoogle Scholar
  123. 123.
    • Lapp H, Mitrovic V, Franz N, Heuer H, Buerke M, Wolfertz J, et al. Cinaciguat (BAY 58–2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation. 2009;119(21):2781–8. doi: 10.1161/CIRCULATIONAHA.108.800292. This clinical study showed that cinaciguat reduces systemic vascular resistance in patients with heart failure, demonstrating the proof of concept that specific activation of oxidized sGC has the expected hemodynamic effects in patients.PubMedCrossRefGoogle Scholar
  124. 124.
    Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993;75(7):1273–86.PubMedCrossRefGoogle Scholar
  125. 125.
    Gyurko R, Leupen S, Huang PL. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology. 2002;143(7):2767–74.PubMedCrossRefGoogle Scholar
  126. 126.
    Godecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Godecke S, et al. Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res. 1998;82(2):186–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Gregg AR, Schauer A, Shi O, Liu Z, Lee CG, O'Brien WE. Limb reduction defects in endothelial nitric oxide synthase-deficient mice. Am J Physiol. 1998;275(6 Pt 2):H2319–24.PubMedGoogle Scholar
  128. 128.
    Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375(6530):408–11. doi: 10.1038/375408a0.PubMedCrossRefGoogle Scholar
  129. 129.
    Laubach VE, Shesely EG, Smithies O, Sherman PA. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA. 1995;92(23):10688–92.PubMedCrossRefGoogle Scholar
  130. 130.
    MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995;81(4):641–50.PubMedCrossRefGoogle Scholar
  131. 131.
    Tranguch S, Huet-Hudson Y. Decreased viability of nitric oxide synthase double knockout mice. Mol Reprod Dev. 2003;65(2):175–9. doi: 10.1002/mrd.10274.PubMedCrossRefGoogle Scholar
  132. 132.
    Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, et al. Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Natl Acad Sci USA. 2005;102(30):10616–21. doi: 10.1073/pnas.0502236102.PubMedCrossRefGoogle Scholar
  133. 133.
    Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell. 1996;87(6):1015–23.PubMedCrossRefGoogle Scholar
  134. 134.
    Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, et al. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res. 2007;100(3):e32–44. doi: 10.1161/01.RES.0000259042.04576.6a.PubMedCrossRefGoogle Scholar
  135. 135.
    Loyer X, Gomez AM, Milliez P, Fernandez-Velasco M, Vangheluwe P, Vinet L, et al. Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation. 2008;117(25):3187–98. doi: 10.1161/CIRCULATIONAHA.107.741702.PubMedCrossRefGoogle Scholar
  136. 136.
    Packer MA, Hemish J, Mignone JL, John S, Pugach I, Enikolopov G. Transgenic mice overexpressing nNOS in the adult nervous system. Cell Mol Biol (Noisy-le-Grand). 2005;51(3):269–77.Google Scholar
  137. 137.
    Brunner F, Andrew P, Wolkart G, Zechner R, Mayer B. Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation. 2001;104(25):3097–102.PubMedCrossRefGoogle Scholar
  138. 138.
    Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res. 2004;94(9):1256–62. doi: 10.1161/01.RES.0000126497.38281.23.PubMedCrossRefGoogle Scholar
  139. 139.
    Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, et al. Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest. 1998;102(12):2061–71. doi: 10.1172/JCI4394.PubMedCrossRefGoogle Scholar
  140. 140.
    van Haperen R, de Waard M, van Deel E, Mees B, Kutryk M, van Aken T, et al. Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. J Biol Chem. 2002;277(50):48803–7. doi: 10.1074/jbc.M209477200.PubMedCrossRefGoogle Scholar
  141. 141.
    Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, et al. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest. 2002;109(6):735–43. doi: 10.1172/JCI13265.PubMedGoogle Scholar
  142. 142.
    Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, et al. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res. 2002;90(1):93–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, et al. Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem. 1998;273(5):2493–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science. 1996;274(5295):2082–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Pokreisz P, Pellens M, Van den Bergh A, Gillijns H, Bito V, Lenaers I, et al. Cardiomyocyte-specific overexpression of type 5 phosphodiesterase impairs postinfarction myocardial function and left ventricular remodeling. Circulation. 2007;116(16):45–6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Robrecht Thoonen
    • 1
  • Patrick Y. Sips
    • 2
  • Kenneth D. Bloch
    • 3
  • Emmanuel S. Buys
    • 4
    Email author
  1. 1.Molecular Cardiology Research Institute, Molecular Cardiology Research CenterTufts Medical CenterBostonUSA
  2. 2.Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General HospitalHarvard Medical SchoolCharlestownUSA
  3. 3.Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations