Advertisement

Current Hypertension Reports

, Volume 15, Issue 1, pp 71–79 | Cite as

The “His and Hers” of the Renin-Angiotensin System

  • Lucinda M. Hilliard
  • Amanda K. Sampson
  • Russell D. Brown
  • Kate M. DentonEmail author
Hypertension and the Kidney (RM Carey and A Mimran, Section Editors)

Abstract

Sex differences exist in the regulation of arterial pressure and renal function by the renin-angiotensin system (RAS). This may in part stem from a differential balance in the pressor and depressor arms of the RAS. In males, the ACE/AngII/AT1R pathways are enhanced, whereas, in females, the balance is shifted towards the ACE2/Ang(1-7)/MasR and AT2R pathways. Evidence clearly demonstrates that premenopausal women, as compared to aged-matched men, are protected from renal and cardiovascular disease, and this differential balance of the RAS between the sexes likely contributes. With aging, this cardiovascular protection in women is lost and this may be related to loss of estrogen postmenopause but the possible contribution of other sex hormones needs to be further examined. Restoration of these RAS depressor pathways in older women, or up-regulation of these in males, represents a therapeutic target that is worth pursuing.

Keywords

Sex differences Arterial blood pressure Kidney function Cardiovascular disease Angiotensin II Angiotensin (1-7) Angiotensin-converting enzyme 2 Mas receptor Angiotensin type 2 receptor Depressor arm of the RAS Sex hormones Sex chromosomes Hypertension 

Notes

Disclosure

L.M. Hilliard: none; A.K. Sampson: none; R.D. Brown: none; K.M. Denton: research funding from National Health and Medical Research Council.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pilote L, Dasgupta K, Guru V, Humphries KH, McGrath J, Norris C, Rabi D, Tremblay J, Alamian A, Barnett T, et al. A comprehensive view of sex-specific issues related to cardiovascular disease. CMAJ. 2007;176(6):S1–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Patlak M. His and her physiology and sex hormones. Endocr News. 2009;1(part 1):16–7.Google Scholar
  3. 3.
    Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med. 2008;5(Suppl A):S3–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Franconi F, Brunelleschi S, Steardo L, Cuomo V. Gender differences in drug responses. Pharmacol Res. 2007;55(2):81–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Zucker I, Beery AK. Males still dominate animal studies. Nature. 2010;465(7299):690.PubMedCrossRefGoogle Scholar
  6. 6.
    Kang A, Miller J. Effects of gender on the renin-angiotensin system, blood pressure and renal function. Curr Hypertens Rep. 2002;4:143–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–208.PubMedCrossRefGoogle Scholar
  8. 8.
    Sandberg K, Ji H. Sex and the renin angiotensin system: implications for gender differences in the progression of kidney disease. Adv Ren Replace Ther. 2003;10(1):15–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Evans RG, Stevenson KM, Bergstrom G, Denton KM, Madden AC, Gribben RL, Weekes SR, Anderson WP. Sex differences in pressure diuresis/natriuresis in rabbits. Acta Physiol Scand. 2000;169(4):309–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiinberg N, Hoegholm A, Christensen HR, Bang LE, Mikkelsen KL, Nielsen PE, Svendsen TL, Kampmann JP, Madsen NH, Bentzon MW. 24-h ambulatory blood pressure in 352 normal Danish subjects, related to age and gender. Am J Hypertens. 1995;8(10 Pt 1):978–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Schrier RW, Ohara M. Dilemmas in human and rat pregnancy: proposed mechanisms relating to arterial vasodilation. J Neuroendocrinol. 2010;22(5):400–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Valdiviezo C, Garovic VD, Ouyang P. Preeclampsia and hypertensive disease in pregnancy: their contributions to cardiovascular risk. Clin Cardiol. 2012;35(3):160–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Fischer M, Baessler A, Schunkert H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res. 2002;53:672–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1220–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- induced hypertension. Braz J Med Biol Res. 2007;40:727–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 2010;24(6):687–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Sampson AK, Widdop RE, Denton KM. Sex-differences in circadian blood pressure variations in response to chronic angiotensin II infusion in rats. Clin Exp Pharmacol Physiol. 2008;35(4):391–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther. 2008;120(3):292–316.PubMedCrossRefGoogle Scholar
  19. 19.
    Schunkert H, Danser AH, Hense HW, Derkx FH, Kurzinger S, Riegger GA. Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation. 1997;95(1):39–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM. Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept. 2005;124(1–3):7–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Miyata N, Park F, Li XF, Cowley Jr AW. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol. 1999;277(3 Pt 2):F437–46.PubMedGoogle Scholar
  22. 22.
    Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997;30(5):1238–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Reckelhoff JF. Sex and sex steroids in cardiovascular-renal physiology and pathophysiology. Gend Med. 2008;5(Suppl A):S1–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Sandberg K, Ji H. Why can't a woman be more like a man?: Is the angiotensin type 2 receptor to blame or to thank? Hypertension. 2008;52(4):615–7.PubMedCrossRefGoogle Scholar
  25. 25.
    •• Sampson AK, Moritz KM, Jones ES, Flower RL, Widdop RE, Denton KM. Enhanced angiotensin II type 2 receptor mechanisms mediate decreases in arterial pressure attributable to chronic low-dose angiotensin II in female rats. Hypertension. 2008;52(4):666–71. This work demonstrated for the first time a direct arterial pressure-lowering effect of AngII at the AT 2 R in female but not male rats.PubMedCrossRefGoogle Scholar
  26. 26.
    Sampson AK, Hilliard LM, Moritz KM, Thomas MC, Tikellis C, Widdop RE, Denton KM. The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. Am J Physiol Regul Integr Comp Physiol. 2012;302(1):R159–65.PubMedCrossRefGoogle Scholar
  27. 27.
    •• Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension. 2012;59(1):129–35. This studied showed that tubuloglomerular feedback, an important regulator of renal function, was differentially influenced by the AT 2 R in males and females, such that in females, tubuloglomerular feedback sensitivity was not enhanced in response to subpressor AngII infusion, unlike the situation in males.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, Sandberg K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17beta-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010;1(1):6. This studied showed that ACE2 activity was regulated by estrogen and that this contributed to the attenuated response to AngII infusion females as compared to males.PubMedCrossRefGoogle Scholar
  29. 29.
    Hudson M, Rahme E, Behlouli H, Sheppard R, Pilote L. Sex differences in the effectiveness of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in patients with congestive heart failure–a population study. Eur J Heart Fail. 2007;9(6–7):602–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Os I, Franco V, Kjeldsen SE, Manhem K, Devereux RB, Gerdts E, Hille DA, Lyle PA, Okin PM, Dahlof B, et al. Effects of losartan in women with hypertension and left ventricular hypertrophy: results from the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 2008;51(4):1103–8.PubMedCrossRefGoogle Scholar
  31. 31.
    •• Hladunewich MA, Kingdom J, Odutayo A, Burns K, Lai V, O'Brien T, Gandhi S, Zimpelmann J, Kiss A, Miller J, et al. Postpartum assessment of the renin angiotensin system in women with previous severe, early-onset preeclampsia. J Clin Endocrinol Metab. 2011;96(11):3517–24. This work highlighted the potential for loss of normal regulation of arterial pressure by the vasodepressor arm of the RAS in women might play a role in pre-eclampsia and increased risk of cardiovascular disease in later life.PubMedCrossRefGoogle Scholar
  32. 32.
    Takeda-Matsubara Y, Iwai M, Cui TX, Shiuchi T, Liu HW, Okumura M, Ito M, Horiuchi M. Roles of angiotensin type 1 and 2 receptors in pregnancy-associated blood pressure change. Am J Hypertens. 2004;17(8):684–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Miller JA, Cherney DZ, Duncan JA, Lai V, Burns KD, Kennedy CR, Zimpelmann J, Gao W, Cattran DC, Scholey JW. Gender differences in the renal response to renin-angiotensin system blockade. J Am Soc Nephrol. 2006;17(9):2554–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Silbiger S. Renal hemodynamic responses to renin-angiotensin blockade differ in men and women. Nat Clin Pract. 2007;3(2):68–9.CrossRefGoogle Scholar
  35. 35.
    Miller JA, Anacta LA, Cattran DC. Impact of gender on the renal response to angiotensin II. Kidney Int. 1999;55(1):278–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen YF, Meng QC. Sexual dimorphism of blood pressure in spontaneously hypertensive rats is androgen dependent. Life Sci. 1991;48(1):85–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Crofton JT, Ota M, Share L. Role of vasopressin, the renin-angiotensin system and sex in Dahl salt-sensitive hypertension. J Hypertens. 1993;11(10):1031–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ganten U, Schroder G, Witt M, Zimmermann F, Ganten D, Stock G. Sexual dimorphism of blood pressure in spontaneously hypertensive rats: effects of anti-androgen treatment. J Hypertens. 1989;7(9):721–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Iams SG, Wexler BC. Retardation in the development of spontaneous hypertension in SH rats by gonadectomy. J Lab Clin Med. 1977;90(6):997–1003.PubMedGoogle Scholar
  40. 40.
    Malyusz M, Ehrens HJ, Wrigge P. Effect of castration on the experimental renal hypertension of the rat. Blood pressure, nephrosclerosis, long-chain fatty acids, and N-acetylation of PAH in the kidney. Nephron. 1985;40(1):96–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Masubuchi Y, Kumai T, Uematsu A, Komoriyama K, Hirai M. Gonadectomy-induced reduction of blood pressure in adult spontaneously hypertensive rats. Acta Endocrinol (Copenh). 1982;101(1):154–60.Google Scholar
  42. 42.
    Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31(1 Pt 2):435–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Rowland NE, Fregly MJ. Role of gonadal hormones in hypertension in the Dahl salt-sensitive rat. Clin Exp Hypertens A. 1992;14(3):367–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Rettig R, Folberth CG, Stauss H, Kopf D, Waldherr R, Baldauf G, Unger T. Hypertension in rats induced by renal grafts from renovascular hypertensive donors. Hypertension. 1990;15(4):429–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Harrap SB, Wang BZ, MacLellan DG. Renal transplantation between male and female spontaneously hypertensive rats. Hypertension. 1992;19(5):431–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen YF, Naftilan AJ, Oparil S. Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension. 1992;19(5):456–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Ellison KE, Ingelfinger JR, Pivor M, Dzau VJ. Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest. 1989;83(6):1941–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Johnston CI, Fabris B, Jandeleit K. Intrarenal renin-angiotensin system in renal physiology and pathophysiology. Kidney Int Suppl. 1993;42:S59–63.PubMedGoogle Scholar
  49. 49.
    Katz FH, Roper EF. Testosterone effect on renin system in rats. Proc Soc Exp Biol Med. 1977;155(3):330–3.PubMedGoogle Scholar
  50. 50.
    Kienitz T, Quinkler M. Testosterone and blood pressure regulation. Kidney Blood Press Res. 2008;31(2):71–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Reckelhoff JF, Zhang H, Srivastava K, Granger JP. Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension. 1999;34(4 Pt 2):920–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Quan A, Chakravarty S, Chen JK, Chen JC, Loleh S, Saini N, Harris RC, Capdevila J, Quigley R. Androgens augment proximal tubule transport. Am J Physiol Renal Physiol. 2004;287(3):F452–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension. 2000;35(1 Pt 2):480–3.PubMedCrossRefGoogle Scholar
  54. 54.
    De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci. 2002;22(20):9005–14.PubMedGoogle Scholar
  55. 55.
    Ely DL, Turner ME. Hypertension in the spontaneously hypertensive rat is linked to the Y chromosome. Hypertension. 1990;16(3):277–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Negrin CD, McBride MW, Carswell HV, Graham D, Carr FJ, Clark JS, Jeffs B, Anderson NH, Macrae IM, Dominiczak AF. Reciprocal consomic strains to evaluate y chromosome effects. Hypertension. 2001;37(2 Part 2):391–7.PubMedCrossRefGoogle Scholar
  57. 57.
    • Sampson AK, Jennings GL, Chin-Dusting JP. Y are males so difficult to understand?: a case where "X" does not mark the spot. Hypertension. 2012;59(3):525–31. Recent comprehensive review examining the contribution of the Y chromosome to hypertension.PubMedCrossRefGoogle Scholar
  58. 58.
    Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, Arnold AP, Sandberg K. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension. 2010;55(5):1275–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Milsted A, Underwood AC, Dunmire J, DelPuerto HL, Martins AS, Ely DL, Turner ME. Regulation of multiple renin-angiotensin system genes by Sry. J Hypertens. 2010;28(1):59–64.PubMedCrossRefGoogle Scholar
  60. 60.
    Ely D, Milsted A, Dunphy G, Boehme S, Dunmire J, Hart M, Toot J, Turner M. Delivery of sry1, but not sry2, to the kidney increases blood pressure and sns indices in normotensive wky rats. BMC Physiol. 2009;9:10.PubMedCrossRefGoogle Scholar
  61. 61.
    O'Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation. 1998;97(18):1766–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Reich H, Duncan JA, Weinstein J, Cattran DC, Scholey JW, Miller JA. Interactions between gender and the angiotensin type 1 receptor gene polymorphism. Kidney Int. 2003;63(4):1443–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Lu N, Yang Y, Wang Y, Liu Y, Fu G, Chen D, Dai H, Fan X, Hui R, Zheng Y. ACE2 gene polymorphism and essential hypertension: an updated meta-analysis involving 11,051 subjects. Mol Biol Rep. 2012;39(6):6581–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Mohana VU, Swapna N, Surender RS, Vishnupriya S, Padma T. Gender-related association of AGT gene variants (M235T and T174M) with essential hypertension–a case-control study. Clin Exp Hypertens. 2012;34(1):38–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Jeunemaitre X, Gimenez-Roqueplo AP, Celerier J, Corvol P. Angiotensinogen variants and human hypertension. Curr Hypertens Rep. 1999;1(1):31–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Cherney DZ, Lai V, Miller JA, Scholey JW, Reich HN. The angiotensin II receptor type 2 polymorphism influences haemodynamic function and circulating RAS mediators in normotensive humans. Nephrol Dial Transplant. 2010;25(12):4093–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Campbell CY, Fang BF, Guo X, Peralta CA, Psaty BM, Rich SS, Young JH, Coresh J, Kramer HJ, Rotter JI, et al. Associations between genetic variants in the ACE, AGT, AGTR1 and AGTR2 genes and renal function in the Multi-ethnic Study of Atherosclerosis. Am J Nephrol. 2010;32(2):156–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Hall JE, Brands MW, Henegar JR. Angiotensin II and long-term arterial pressure regulation: the overriding dominance of the kidney. J Am Soc Nephrol. 1999;10 Suppl 12:S258–65.PubMedGoogle Scholar
  70. 70.
    Sampson AK, Moritz KM, Denton KM. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gender Med. 2012.Google Scholar
  71. 71.
    •• Hilliard LM, Nematbakhsh M, Kett MM, Teichman E, Sampson AK, Widdop RE, Evans RG, Denton KM. Gender differences in pressure-natriuresis and renal autoregulation: role of the Angiotensin type 2 receptor. Hypertension. 2011;57(2):275–82. This represents the first report that the AT 2 R contributes to the sexual dimorphism in renal function. It highlights the major protective role that the AT 2 R plays in the regulation of renal function in both the sexes, which is particularly significant in females.PubMedCrossRefGoogle Scholar
  72. 72.
    Khraibi AA, Liang M, Berndt TJ. Role of gender on renal interstitial hydrostatic pressure and sodium excretion in rats. Am J Hypertens. 2001;14(9 Pt 1):893–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Siragy HM. The angiotensin II type 2 receptor and the kidney. J Renin Angiotensin Aldosterone Syst. 2010;11(1):33–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH, Fortes ZB, Nigro D. A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res. 2004;62(3):587–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Armando I, Jezova M, Juorio AV, Terron JA, Falcon-Neri A, Semino-Mora C, Imboden H, Saavedra JM. Estrogen upregulates renal angiotensin II AT(2) receptors. Am J Physiol Renal Physiol. 2002;283(5):F934–43.PubMedGoogle Scholar
  76. 76.
    Schneider MP, Wach PF, Durley MK, Pollock JS, Pollock DM. Sex differences in acute ANG II-mediated hemodynamic responses in mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R899–906.PubMedCrossRefGoogle Scholar
  77. 77.
    •• Sullivan JC, Bhatia K, Yamamoto T, Elmarakby AA. Angiotensin (1-7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension. 2010;56(4):658–66. An important study that comprehensively examined the contribution of Ang(1-7) to the response to AngII infusion in the SHR model, demonstrating enhanced effects in females.PubMedCrossRefGoogle Scholar
  78. 78.
    Gross V, Schunck WH, Honeck H, Milia AF, Kargel E, Walther T, Bader M, Inagami T, Schneider W, Luft FC. Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int. 2000;57(1):191–202.PubMedCrossRefGoogle Scholar
  79. 79.
    Siragy HM, Inagami T, Ichiki T, Carey RM. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci USA. 1999;96(11):6506–10.PubMedCrossRefGoogle Scholar
  80. 80.
    • Hilliard LM, Jones ES, Steckelings UM, Unger T, Widdop RE, Denton KM. Sex-specific influence of angiotensin type 2 receptor stimulation on renal function: a novel therapeutic target for hypertension. Hypertension. 2012;59(2):409–14. The first study to demonstrate that direct AT 2 R stimulation, with Compound 21, reduced renal vascular tone significantly more in females than males.PubMedCrossRefGoogle Scholar
  81. 81.
    • Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, Padia SH, Carey RM. Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension. 2012;60(2):387–95. This study provides evidence that angiotensin III is the preferred AT 2 R agonist in the kidney. Given the enhanced role of the AT 2 R in the female vasculature, this work needs to be extended to examine the role of this peptide in the sex-dependent regulation of renal hemodynamics.PubMedCrossRefGoogle Scholar
  82. 82.
    Padia SH, Kemp BA, Howell NL, Siragy HM, Fournie-Zaluski MC, Roques BP, Carey RM. Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension. 2007;49(3):625–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Padia SH, Kemp BA, Howell NL, Gildea JJ, Keller SR, Carey RM. Intrarenal angiotensin III infusion induces natriuresis and angiotensin type 2 receptor translocation in Wistar-Kyoto but not in spontaneously hypertensive rats. Hypertension. 2009;53(2):338–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Padia SH, Kemp BA, Howell NL, Fournie-Zaluski MC, Roques BP, Carey RM. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension. 2008;51(2):460–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Padia SH, Howell NL, Siragy HM, Carey RM. Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension. 2006;47(3):537–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol. 2010;298(6):F1297–305.PubMedCrossRefGoogle Scholar
  87. 87.
    Pinheiro SV, Simoes ESAC. Angiotensin converting enzyme 2, angiotensin-(1-7), and receptor MAS axis in the kidney. Int J Hypertens. 2012;2012:414128.PubMedGoogle Scholar
  88. 88.
    Zimmerman D, Burns KD. Angiotensin-(1-7) in kidney disease: a review of the controversies. Clin Sci. 2012;123(6):333–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol. 2008;295(1):H10–20.PubMedCrossRefGoogle Scholar
  90. 90.
    •• Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, Santos RA, Souza DG, Simoes ESAC, Teixeira MM. Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens. 2012;2012:808726. This study demonstrated that direct MasR stimulation has therapeutic potential in the treatment of renal disease. Future work needs to explore the possiblity that these actions may be enhanced in females.PubMedGoogle Scholar
  91. 91.
    Burgelova M, Vanourkova Z, Thumova M, Dvorak P, Opocensky M, Kramer HJ, Zelizko M, Maly J, Bader M, Cervenka L. Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens. 2009;27(10):1988–2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Dharmani M, Mustafa MR, Achike FI, Sim MK. Effects of angiotensin 1-7 on the actions of angiotensin II in the renal and mesenteric vasculature of hypertensive and streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;561(1–3):144–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.PubMedGoogle Scholar
  94. 94.
    Safari T, Nematbakhsh M, Hilliard LM, Evans RG, Denton KM. Sex differences in the renal vascular response to angiotensin II involves the Mas receptor. Acta physiologica (Oxford, England) 2012.Google Scholar
  95. 95.
    • Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci. 2012;123(4):193–203. An excellent review focusing upon recent advances in the understanding of angiotensin receptor-interacting proteins and AngII receptor-activating mechanisms.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Lucinda M. Hilliard
    • 1
  • Amanda K. Sampson
    • 2
  • Russell D. Brown
    • 1
  • Kate M. Denton
    • 1
    Email author
  1. 1.Department of PhysiologyMonash UniversityMelbourneAustralia
  2. 2.BakerIDIMelbourneAustralia

Personalised recommendations