Current Hypertension Reports

, Volume 14, Issue 6, pp 492–497 | Cite as

Cytoskeletal Regulation of TRPC Channels in the Cardiorenal System

  • Jonathan A. Stiber
  • Youlan Tang
  • TianYu Li
  • Paul B. Rosenberg
Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)


Transient receptor potential canonical (TRPC) channels have been implicated in several aspects of cardiorenal physiology including regulation of blood pressure, vasoreactivity, vascular remodeling, and glomerular filtration. Gain and loss of function studies also support the role of TRPC channels in adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses TRP channels in the cardiovascular and glomerular filtration systems and their role in disease pathogenesis. We describe the regulation of gating of TRPC channels in the cardiorenal system as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of TRP channels in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.


Transient receptor potential channels Transient receptor potential canonical channels TRPC channels Calcium Cytoskeleton Scaffolding proteins Hypertension Mechanotransduction Vascular reactivity Vascular remodeling Hypertrophy Heart failure Podocyte Focal segmental glomerulosclerosis Cardiorenal system End-stage kidney disease 


Papers of particular interest, published recently, have been highlighted as: Of importance •• Of major importance

  1. 1.
    Black HR, Elliott WJ. Hypertension: A companion to Braunwald's heart disease. Philadelphia: Saunders/Elsevier; 2007.Google Scholar
  2. 2.
    Adams Jr KF. Pathophysiologic role of the renin-angiotensin-aldosterone and sympathetic nervous systems in heart failure. Am J Health Syst Pharm. 2004;61 Suppl 2:S4–13.PubMedGoogle Scholar
  3. 3.
    Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118:2259–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Brayden JE, Earley S, Nelson MT, Reading S. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol. 2008;35:1116–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Firth AL, Remillard CV, Yuan JX. TRP channels in hypertension. Biochim Biophys Acta. 2007;1772:895–906.PubMedCrossRefGoogle Scholar
  6. 6.
    Becker D, Bereiter-Hahn J, Jendrach M. Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol. 2009;88:141–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Clark K, Middelbeek J, van Leeuwen FN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol. 2008;87:631–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol. 2004;6:709–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE. 2001;2001:RE1.PubMedCrossRefGoogle Scholar
  10. 10.
    Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res. 2002;109:95–104.PubMedCrossRefGoogle Scholar
  11. 11.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A. 1995;92:9652–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, et al. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem. 1997;272:29672–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T. Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:257–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, et al. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem. 2000;275:37559–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Ma X, Nilius B, Wong JW, Huang Y, Yao X. Electrophysiological properties of heteromeric TRPV4-C1 channels. Biochim Biophys Acta. 2011;1808:2789–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron. 2001;29:645–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Schaefer M. Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch. 2005;451:35–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, et al. Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep. 2008;9:472–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Ito S, Kume H, Naruse K, Kondo M, Takeda N, Iwata S, et al. A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2008;38:407–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J Cell Biol. 2007;178:107–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, et al. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci. 2009;122:1322–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Sassoli C, Formigli L, Bini F, Tani A, Squecco R, Battistini C, et al. Effects of S1p on skeletal muscle repair/regeneration during eccentric contraction. J Cell Mol Med. 2010.Google Scholar
  24. 24.
    Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell. 2003;114:777–89.PubMedCrossRefGoogle Scholar
  25. 25.
    • Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, et al. Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol. 2008;28:2637–47. This paper shows that Homer 1 isoforms serve as regulatory scaffolds for TRPC1 channels in striated muscle.PubMedCrossRefGoogle Scholar
  26. 26.
    Stiber JA, Seth M, Rosenberg PB. Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol. 2009;54:116–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Bloch MJ, Basile J. African American patients with hypertensive chronic kidney disease receive no benefit on kidney disease progression from the currently recommended blood pressure goal of <130/80 mmHg unless there is significant proteinuria at baseline: long-term follow-up of the AASK study. J Clin Hypertens (Greenwich). 2011;13:214–6.CrossRefGoogle Scholar
  28. 28.
    Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP. Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol. 2006;290:F1241–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.PubMedCrossRefGoogle Scholar
  31. 31.
    • Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, et al. TRPC6 Enhances Angiotensin II-induced Albuminuria. J Am Soc Nephrol. 2011. This paper shows that despite developing similar levels of hypertension in response to chronic angiotensin II infusion as WT, mice lacking TRPC6 developed significantly less albuminuria, suggesting that TRPC6 adversely influences podocyte function. Google Scholar
  32. 32.
    Moller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol. 2007;18:29–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Moller CC, Flesche J, Reiser J. Sensitizing the Slit diaphragm with TRPC6 ion channels. J Am Soc Nephrol. 2009;20:950–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Sparks MA, Parsons KK, Stegbauer J, Gurley SB, Vivekanandan-Giri A, Fortner CN, et al. Angiotensin II type 1A receptors in vascular smooth muscle cells do not influence aortic remodeling in hypertension. Hypertension. 2011;57:577–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Shin EY, Lee CS, Park MH, Kim DJ, Kwak SJ, Kim EG. Involvement of betaPIX in angiotensin II-induced migration of vascular smooth muscle cells. Exp Mol Med. 2009;41:387–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem. 2005;280:39786–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu D, Scholze A, Zhu Z, Kreutz R, Wehland-von-Trebra M, Zidek W, et al. Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens. 2005;18:1503–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A, et al. Transient receptor potential channels in essential hypertension. J Hypertens. 2006;24:1105–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol. 2005;25:6980–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu D, Yang D, He H, Chen X, Cao T, Feng X, et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension. 2009;53:70–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, et al. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis. 2007;195:287–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A, Xu SZ, et al. Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol. 2005;288:C872–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA. Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol. 2008;295:C779–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res. 2006;98:557–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Ingueneau C, Huynh UD, Marcheix B, Athias A, Gambert P, Negre-Salvayre A, et al. TRPC1 is regulated by caveolin-1 and is involved in oxidized LDL-induced apoptosis of vascular smooth muscle cells. J Cell Mol Med. 2009;13:1620–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakayama H, Wilkin BJ, Bodi I, Molkentin JD. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 2006;20:1660–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta. 2007;1772:885–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 2006;116:3114–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem. 2006;281:33487–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 2006;25:5305–16.PubMedCrossRefGoogle Scholar
  51. 51.
    •• Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105:1023–30. This paper shows that mice lacking TRPC1 fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to pressure overload.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jonathan A. Stiber
    • 1
  • Youlan Tang
    • 1
  • TianYu Li
    • 1
  • Paul B. Rosenberg
    • 1
  1. 1.Department of Medicine and Ion Channel Research UnitDuke University Medical CenterDurhamUSA

Personalised recommendations